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Abstract

In this pilot study, we developed a set of computer vision
based surface segmentation and statistical shape analysis
algorithms to study genetic influences on brain structure in
a database of brain MRI scans of normal twins. A set of
manually delineated 3D parametric surfaces, representing
the lateral ventricles, was deformed, using a Navier-Stokes
fluid image registration algorithm, onto all the images in
the database. The geometric transformations thus obtained
were used to propagate the segmentation labels to all the
other images. 3D radial distance maps were derived to en-
code anatomical shape differences. The proportion of shape
variance attributable to genetic factors, known as the her-
itability, was estimated from the shape models using a re-
stricted maximum likelihood method to increase statistical
power. Segmentation errors associated with projecting la-
bels onto new images were greatly reduced through multi-
atlas averaging. The resulting algorithms provide a conve-
nient and sensitive tool to recover and analyze small intra-
pair image differences, and will make it easier to detect ge-
netic influences on brain structure.

1 Introduction

Accurate automated segmentation and labeling of 3D
brain images is an extremely challenging problem in com-
puter vision, but is urgently needed for a vast range of
medical applications, including clinical trials and popula-
tion studies of disease. Many population-based studies of
Alzheimer’s disease, multiple sclerosis, and schizophre-
nia [27] now use sequential imaging to examine brain
changes over time in hundreds or even thousands of sub-
jects, making automated image analysis essential.

There is also great scientific and commercial interest
in identifying treatments, genes, environmental or demo-
graphic factors that influence brain integrity, as quantified
by computational measures of the shape and volume of
anatomical substructures. Even so, the discovery of factors
that influence brain structure has been held back by the lack
of algorithms to automatically identify and compare mod-
els of brain structures on a large scale. Automated brain
segmentation systems have been proposed, but they are not
yet in wide use for large-scale population studies, and many
structures are so complex and variable in shape that they are
still most commonly traced manually by human experts.

Although many algorithms have been proposed to par-
tially automate brain structure extractions, they still re-
quire some user input and therefore some amount of ex-
pert knowledge. This can include selecting several points



by hand on the structure boundary to initialize a deformable
template close to the structure, prior to high-dimensional
fluid registration. Hogan et al. [20] used a fluid registration
model to deform a template hippocampal surface model into
new subjects’ scans, yielding a set of models that were ana-
lyzed for group differences in shape in Alzheimer’s disease
(AD) [1] and shape asymmetries [31]. Level-set or active
surface methods, which use partial differential equations to
evolve a deforming template under image-derived forces,
often require some interactive initialization for accurate la-
bel propagation [32].

Some groups have attempted fully automated subcortical
segmentation, such as [10] and [15], who used a Markov
Random Field model to encode statistical prior informa-
tion on the expected intensities and adjacencies of struc-
tures. Zhou et al. [33] used fuzzy templates to automatically
segment different brain structures based on information ex-
tracted from a set of training images. Artificial neural net-
works were used by Ferrarini et al. [14] to study ventricular
shape variations in healthy elderly and AD subjects, gener-
ating a control average surface and a cloud of corresponding
nodes across a data set. Heckemann et al. [19] performed
label propagation using free-form deformations and deci-
sion fusion to provide automated anatomical segmentations
of the brain.

Computational anatomic studies of large brain MRI
databases have led to significant neuroscientific discover-
ies regarding brain changes throughout life and in disease.
Even so, the effects of genetics and environment on brain
structure are still largely unknown as their detection re-
quires large image databases, automated shape or volumet-
ric analysis, and computational methods to detect gene ef-
fects on structures extracted from populations of 3D images.

Here we combine several powerful computer vision ap-
proaches with genetic modeling techniques to detect subtle
and localized effects of genetic factors on brain structure.
First, we combine a Navier-Stokes 3D fluid image registra-
tion approach with a parametric surface modeling method
to create robust and accurate shape models of a complex
brain structure, the lateral ventricles. This structure is a
sensitive index of brain change and disease progression in
Alzheimer’s disease [29], HIV/AIDS [ 28], and schizophre-
nia [22].

We extracted parametric surface models from a database
of brain MRIs from identical and fraternal twins. Using
this set of shape models, we fitted a restricted maximum
likelihood model to isolate effects of genetic versus non-
genetic factors on brain structure. We were able to isolate
genetic sources of variance from computationally derived
shape and geometric brain measures, because random ge-
netic polymorphisms (variations across subjects) influence
brain shape and are inherited identically in identical twins,
while fraternal twins share on average only half of these

polymorphisms. To our knowledge, this is the first study
to apply genetic variance modeling to anatomical shapes
extracted from an MRI brain database with a robust com-
puter vision system. The resulting system aims to identify
brain structural features that are most strongly influenced
by genes, and ultimately will be used to screen and test
for effects of specific candidate genes (polymorphic alle-
les) that are thought to influence brain morphology (such
as apolipoprotein E4, and brain-derived neurotrophic fac-
tor, BDNF, among others).

The lateral ventricles, Figure1, are essentially fluid-
filled cavities in the brain, and are enlarged in brain disor-
ders such as Alzheimer’s, schizophrenia and bipolar illness.
Ventricular shape changes indirectly reflect atrophy in sur-
rounding structures, but surface-based maps of the ventri-
cles provide sensitive assessments of brain integrity, as well
as volumetric measures that correlate with cognitive dete-
rioration in Alzheimer’s disease [6, 29], HIV/AIDS [ 28],
schizophrenia [22, 23, 25]. Ventricular size and shape are
altered as each of these diseases progresses [21], and of-
fer a potential approach to evaluate disease progression in
large-scale drug trials. Those at heightened genetic risk
for schizophrenia (e.g., a patient.s unaffected twin or sib-
ling) have enlarged ventricles compared to healthy con-
trols [2, 25], as do those at genetic risk for Alzheimer’s
disease [7] compared to elderly controls. There is great in-
terest in identifying the anatomical selectivity of these gene
effects and, once identified, the specific genes that cause
them [4, 5].

To better understand how genes influence brain morphol-
ogy, it would be useful to identify specific structures un-
der genetic influence and pinpoint locations within them
that contain genetically-influenced signals. These signals
can then serve as a proxy to assess the influence of spe-
cific genes. Shape variation in a population can be encoded
by using 3D shape representations, for instance Procrustes
analysis of set of 3D anatomical landmarks [17] or by us-
ing medial axis representations, which describe the bound-
ary of a closed shape in terms of the distance and angle of
boundary points relative to a medial curve or surface thread-
ing through the center of the structure [24]. A recent twin
study [16, 25] examined the genetic effects of neurodegen-
erative disease on the lateral ventricles using two surface-
based shape measures, one derived from a medial represen-
tation and the other involving spherical harmonics. Spher-
ical harmonics provide a complete orthonormal series (i.e.,
basis function) expansion for closed shapes that are homo-
topic to a sphere, and, if used with statistical dimension re-
duction techniques such as principal component analysis,
their coefficients can be used to distil principal modes of
variation or perform pattern classification. The study’s find-
ings suggest that shape statistics can uncover group differ-
ences not detectable using simple volume measurements.



Figure 1. Shape models of the lateral ventricles
in a brain MRI scan. Here a set of 3D para-
metric mesh surfaces is used to represent
the lateral ventricles, a fluid-filled structure
in the brain. Their complex surface geome-
try is affected not just in individuals with de-
generative disease but also in those at ge-
netic risk for disease. A coronal section from
the corresponding 3D MRI scan, and a model
of the brain surface (white mesh) are also
shown. The anterior horns of the ventricles
are shown in blue (top surface) and green
(bottom surface), and the posterior horns are
shown in red (top surface) and yellow (bot-
tom surface).

In this paper, we extract a surface model of the ventri-
cles based on the medial axis representation, and use it to
assess shape differences in a population of subjects. The
brain images are first rigidly and fluidly registered [9] to
an individual subject’s brain on which the ventricles have
been manually segmented. This manual label is propagated
to each of the brain images using the displacement fields
from the registration step. The procedure is performed on
a set of 3 reference brains, whose labellings are then com-
bined by averaging. Finally, the radial distance to the me-
dial axis is computed. The details of this algorithm can be
found in [7, 8]. The multi-atlas averaging technique dramat-
ically reduces random error introduced through automatic
label propagation from a single reference image. Further-
more, this approach eliminates the problem of disconnected
voxels that are commonly found in other bottom-up seg-
mentation methods that independently classify each indi-
vidual voxel as belonging to the structure or not, based on
a feature set. Other multi-atlas approaches are described
in [12, 15, 19, 26].

Using the radial distance as a basis for comparison, we
seek to establish a genetic continuum by examining degrees
of relatedness in various pairings as measured by the intra-
class correlation (ICC). To assess heritability, we pool both
MZ and DZ twin data and solve a restricted maximum like-
lihood (REML) expression using Fisher’s scoring routine.
This restricts the number of parameters being estimated,
thereby increasing statistical power and the stability of the
model.

2 Methods

2.1 Subjects

3D anatomical brain imaging data was acquired from 32
subjects, 10 MZ (6 males, 4 females) and 6 same-sex DZ
(4 males, 2 female) twin pairs as part of a 5-year research
study of 700 pairs of twins. Informed consent was obtained
from all participants and the study was approved by the in-
stitutional review board. The subjects ranged in age from
22-25 years and all were healthy. Zygosity was established
objectively by typing nine independent DNA microsatellite
polymorphisms (PIC> 0.7) by using standard polymerase
chain reaction (PCR) methods and genotyping. These re-
sults were crossed checked with blood group (ABO, MNS,
and Rh), and phenotypic data (hair, skin and eye color), giv-
ing an overall probability of correct zygosity assignment of
greater than 99.99%.

2.2 MRI image acquisition and pre-
processing

3D T1-weighted images were acquired from all subjects
on a 4 Tesla Bruker Medspec whole body scanner, located
at the CMR and Wesley Hospital MRI Research Facility
in Australia. Subjects were scanned using a customized
MP-RAGE 3D T1-weighted sequence to resolve anatomy
at high resolution (0.9 mm isotropic resolution); TR=2500
ms; TE=3.83 ms; T1=1500 ms; pulse angle=15; coronal ori-
entation; FOV= 230× 230× 230 mm3; acquisition matrix
= 256×256×256. All the images were spatially normalized
to the International Consortium for Brain Mapping (ICBM-
53) average brain imaging template [11] using 9 parameter
registration (i.e., 3 rotations, 3 translations, 3 scalings).

2.3 Automated segmentation using multi-
atlas fluid image alignment

For this study, we evaluated the left lateral ventricles by
tracing consecutive coronal slices of the anterior and poste-
rior horns. Data from the inferior horns were not used be-
cause it is difficult to identify consistently in young healthy
subjects. For further anatomical specificity, we divided



these two horns into 2 sections, top and bottom. The fluid
registration approach we follow, which was first described
in [9], treats the deforming image as a compressible viscous
fluid whose motion is governed by a linearized version of
the Navier-Stokes partial differential equation (PDE). A 3D
convolution filter, implementing the Green’s function of the
differential operator governing the flow [3, 18], was used to
speed up the algorithm. In this case, a matching function
based on least squares difference between the image inten-
sities was sufficient for good registration, rather than a mu-
tual information or entropy-based similarity measure, due
to the high contrast between ventricular CSF and brain tis-
sues. The 3D deformation fields from the registration were
applied to the manually segmented image, and the contours
were applied to the unlabeled images and tri-linearly inter-
polated. We randomly picked 3 initial templates (i.e., ex-
pertly hand-labeled images) to perform the averaging pro-
cedure.

2.4 Shape parameter extraction

The contours of the lateral ventricles, segmented as de-
scribed above, are resampled in order to obtain a regu-
lar parametric 3D grid of150 × 100 = 15, 000 surface
points [29, 30]. The medial axis, which curves through the
cross-sectional centroids of the 3D shape, is the reference
from which the perpendicular distance to the grid points at
the surface is measured. These radial distances allow sta-
tistical comparisons of local surface contractions or expan-
sions across subjects to be made.

2.5 Genetic analysis

A phenotype is a specific biological trait such as eye
color, that can be measured in a population; such a trait is
typically influenced by genes and the environment. Heri-
tability is the proportion of phenotypic variance attributable
to genetic variance. It ranges in value from0.0 (where genes
do not contribute at all to individual phenotypic differences)
to 1.0 (individual differences are entirely attributable to ge-
netic differences). Heritability also depends on the range
of typical environments in the population studied. If the
environment of the population is fairly uniform, as in the
case of twins reared together, heritability can be estimated
from phenotypic measures in identical and fraternal twins,
as each type of twin differs in genetic similarity. The twin
design provides a mechanism to study the relative contribu-
tion of genes to phenotypic variability. MZ twins are genet-
ically identical, while DZ twins share, on average, 50% of
their genes. By extending comparisons to pairs with vary-
ing degrees of kinship, we design a genetic continuum from
which to assess heritability of brain substructure shape.

2.5.1 Intraclass correlation calculation

The standard approach to measure the degree of relationship
for twin or other unordered data pairs is to use the intraclass
correlation (ICC). The ANOVA (analysis of variance) for-
mulation

r =
MSbetween −MSwithin

MSbetween + MSwithin
(1)

treats each pair as a random effect and the data from the
members of each pair are viewed as measurement errors;
this model is widely used in twin study calculations. Due to
the variability inherent in estimates derived from a small
sample, the computed ICC values may be negative. In-
creasing the sample size typically gives positive ICC val-
ues. This can be explained by the fact that theMSbetween

and theMSwithin are estimates of the population variance
σ2, but theMSbetween is calculated from sample means and
theMSwithin is calculated from sample variances. Adding
more twin pairs to the study will not affect the within-pair
variance, but it will affect the distribution of the means if
there are differences between twin pairs. The net affect is
for the estimated ICC to become positive as additional twin
pairs are included.

For this study, we use the restricted maximum likelihood
(REML) method, which gives an unbiased ICC estimate.
The non-negative REML formula is given by

r = max

0,

n

n− 1
MSbetween −MSwithin

n

n− 1
MSbetween + MSwithin

 (2)

wheren is the number of twin pairs.

2.5.2 Heritability calculation

The simplest expression for heritability is

h2 =
r

G
, (3)

whereG is the degree of genetic similarity (assumed to be
0.5 for DZ and1.0 for MZ twins) andr is the ICC. From
this, we can obtain independent estimates of heritability
from either group of twins. Heritability may also be esti-
mated by combining information from both sets of twins
using Falconer’s formulation [13]

h2 = 2(rMZ − rDZ). (4)

Since the number of pairs is small, we specify a more
restrictive likelihood model with a smaller number of pa-
rameters. We do this by pooling the MZ and DZ data.
We assume that both groups are distributed with the same
mean, µ, and variance,σ2, and that they differ only



by their covariances,ω2
MZ and ω2

DZ . The negative log-
likelihood L(µ, σ2, ω2

MZ , ω2
DZ) must be minimized over

σ2 > ω2
MZ > ω2

DZ using an iterative algorithm. This en-
sures that the heritability estimates are non-negative. We
compute initial values from method of moments estimates
and use Fisher’s scoring algorithm given by:

Θi+1 = Θi + I(Θ)−1V (Θ) (5)

wherei is the iteration step size,I is the Fisher information
andV (Θ) is the score function. This is an alternative to the
Newton-Raphson method where the Hessian is replaced by
the expected value of the Hessian.

3 Results

For this study, we evaluated the left lateral ventricle trac-
ing consecutive coronal slices of the anterior and poste-
rior horn. To further increase resolution, we divided each
of these two horns into 2 sections, top and bottom. The
number of left ventricular locations sampled (15, 000 ×
4 = 60, 000 points) provides an intraclass correlation (ICC)
statistic and heritability coefficient for each surface grid
point; these have been displayed in the form of a maps (Fig-
ures2 and 3). For summary purposes, these were tabulated
as a mean and standard deviation for all the sampled grid
points (Tables1 and2).

 

 

 

MZ 
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Figure 2. ICC maps show that genetically sim-
ilar MZ twins(top) have greater intra-pair sim-
ilarity than do DZ twins (bottom). The in-
crease in ICC is indicated by the increased
presence of red in the top diagram ( r > 0.5.)

As shown in Table1, the intraclass correlation coef-
ficients were numerically greater in identical twins than
in randomly selected non-related pairs of subjects, for all

Table 1. ICC, 1 atlas

MZ(n=10) DZ(n=6) NR(n=10)
Mean SD Mean SD Mean SD

Top Anter. 0.35 0.20 0.23 0.26 0.11 0.15
Bot Anter. 0.38 0.21 0.20 0.22 0.07 0.11
Top Post. 0.42 0.22 0.25 0.22 0.03 0.06
Bot Post. 0.46 0.23 0.21 0.21 0.05 0.10

of the measures chosen. Although quantitative testing of
the differences in correlations for identical versus fraternal
twins would require a large sample to confirm, this pilot
sample shows that ICCs are numerically greater for twins
with greater genetic affinity. As in prior studies of heritable
traits, there is evidence for a genetic continuum in which
similarity is greatest for MZ twins, somewhat less for DZ
twins, and zero for randomly selected unrelated subjects.

The effects of multi-atlas segmentation and labeling of
the images is also evident from Table2. In Chou et al. [7, 8],
the Hausdorff error of ventricular labelings, estimated by
comparing binary maps of manual versus automated seg-
mentations, decreased as the number of propagated tem-
plates increased. When 3 ventricular templates are prop-
agated into each brain scan and averaged, the net effect, rel-
ative to using a single template, is to reduce a source of
methodological error, namely the error associated with la-
beling of the ventricles. Because this source of labeling er-
ror is diminished, Table2 shows that in general all the ICC

 

 

MZ 
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Figure 3. ICC maps after 3 atlas averaging.
The ICC values (MZ-top, DZ-bottom) increase
with the use of additional reference atlases
(compare with Figure 2) suggesting that a
source of error has been reduced.



Table 2. ICC, 3 atlas registration:
ICCMZ > ICCDZ � ICCNR.

MZ(n=10) DZ(n=6) NR(n=10)
Mean SD Mean SD Mean SD

Top Anter. 0.37 0.22 0.27 0.26 0.15 0.18
Bot Anter. 0.40 0.24 0.26 0.23 0.10 0.13
Top Post. 0.51 0.19 0.32 0.28 0.02 0.04
Bot Post. 0.58 0.20 0.30 0.26 0.05 0.10

coefficients increase for every measure chosen, and for each
type of twin. This is reasonable, as the sources of labeling
error include hand digitization errors in the templates, as
well as minor errors in boundary correspondence due to im-
perfect fluid image registration. Because the magnitude of
these errors is not likely to be correlated between members
of a twin pair (or an unrelated pair), their removal results in
all the ICCs increasing. In some respects, the averaging of
parametric surface models from multiple high-dimensional
registrations could be generalized to a random effects model
of shape variance in a population, where the errors of mea-
surement in a single subject are reduced by repeated mea-
sures and hierarchical modeling rather than direct averag-
ing.

4 Discussion

In this study, we combined several novel computer vision
algorithms for automated brain image segmentation, fluid
image registration, surface parameterization, shape statis-
tics and quantitative genetics to automatically assess how
genes influence brain structure in a medical image database.
We performed fluid segmentation of the lateral ventricles
using a 3D Navier-Stokes registration model in an MRI
database of twins, modeling surface shape variation using
surface-based statistics derived from a medial axis trans-
form. The segmentation approach is novel as it uses multi-
template averaging and a hybrid surface- and volume-based
high-dimensional image registration to improve accuracy.
In initial studies, some other groups [16, 25] have proposed
approaches for modeling genetic influences on brain shape
and volume in twins. Here we use a stable and robust re-
stricted maximum likelihood method to compute genetic
effects on brain structure, as well as proportions of vari-
ance attributable to genes, including tests of reliability (via
the use of different anatomic templates for labeling) and
estimates of heritability computed in an expanding MRI
database. Even in this pilot study, which is intended to
provide a proof of concept for the approach, this benefit of
multi-atlas versus single-atlas image segmentation is sub-
stantial, with ICCs for identical twins rising from0.4 to 0.5

in some cases with the addition of multiple segmentation
templates (or atlases; see Tables1 and2). This increased
genetic signal-to-noise ratio may be of substantial value if
these image-derived measures are to serve as a quantitative
endophenotype to search for the effects of individual can-
didate genes on brain structure, as the database is greatly
expanded.
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[7] Y. Chou, N. Lepoŕe, G. de Zubicaray, S. Rose,
O. Carmichael, J. Becker, A. Toga, and P. Thompson. Auto-
mated 3D Mapping and Shape Analysis of the Lateral Ven-
tricles via Fluid Registration of Multiple Surface Based At-
lases. InISBI, 2007. 2, 3, 5
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Figure 4. Top: 1 atlas; Bottom: 3 atlas regis-
tration. Boxplots comparing ICC values for
MZ, DZ and NR pairs for the Top Anterior,
Bottom Anterior, Top Posterior and Bottom
Posterior locations of the lateral ventricle.
ICCMZ > ICCDZ � ICCNR. The null hypoth-
esis that there is no significant difference be-
tween the means for any given pairing (MZ vs
NR; DZ vs NR; MZ vs DZ) was rejected.
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Figure 5. Top: MZ; Center: DZ; Bottom:
NR; Here we compare the ICCs for measures
derived from anatomical segmentations that
use a single deformable surface template,
versus the generally more accurate segmen-
tations derived from averaging the results
of three deformable surface segmentations.
The higher ICCs obtainable with more tem-
plates suggest that the anatomical labeling
error has been reduced and would otherwise
be a major source of methodological error,
depleting power to assess genetically influ-
enced shape differences.
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