
Comprehensive Riemannian Framework for Open Curves

The underlying theme in this thesis is the use of the full set of physical features – shape,
scale, orientation, and position – in open curve analysis. This information can significantly aid the
clustering, classifying, labeling and data analysis of open curves. In this chapter, we describe a
flexible Riemannian framework for open curves which defines joint feature spaces or manifolds to
study combinations of these features in a consistent way.

1 Introduction

White matter fibers reconstructed from DT-MRI images can be described as 3-dimensional open,
continuous curves. Sulci can also be reconstructed to give a similar geometric description. A
physical description of these structures would involve shape, scale, orientation, and position, the
physical features associated with the curves. Of these features, shape is most commonly used in
medical image analysis.

Several recent papers have proposed the use of a formal Riemannian framework for shape
analysis of continuous curves [1, 2]. This type of framework has many advantages: (i) It provides
techniques for comparing, matching, and deforming shapes of curves under the chosen metric. The
correspondences for these tasks are established automatically. (ii) It also provides tools for defining
and computing statistical summaries of sample shapes for different shape classes [3].

The Riemannian framework for open curves described in this chapter uses the same core ideas
that were developed for elastic shape analysis of continuous closed curves. With this framework, we
can compare and quantify differences between open curves in a coherent way. These comparisons
are based on different feature combinations and each such combination constitutes a manifold. The
five feature combinations we consider are:

1. Shape, orientation, scale and position: S1

2. Shape, orientation, scale: S2

3. Shape and scale: S3

4. Shape and orientation: S4

5. Shape: S5

These manifolds are united by a set of considerations and mathematical techniques; we describe
this common methodology in Section 2. We then give mathematical descriptions for each of these
manifolds (Sections 3.1–3.5).

This chapter serves as a mathematical background for the discussions in later chapters, partic-
ularly those in Part II of this thesis. The material presented is based directly on Mani et al. [4].
The methodology was developed by Anuj Srivastava and his collaborators; their publications, in
particular those on Riemannian analysis of elastic curves, are other reference sources [2, 5, 6, 7, 8].
Concepts from differential geometry and group theory are discussed informally. For a more formal
and complete treatment, the reader is referred to do Carmo [9, 10] for differential geometry and
Rotman [11] for group theory.
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2 General Methodology

The mathematical framework we describe draws from ideas in differential geometry, algebra and
functional analysis and is an extension of the mathematical techniques developed for elastic shape
analysis of continuous closed curves. Joshi et al. [2, 5, 12] introduced the square-root velocity
function (SRVF) for the analysis of closed curves and Balov et al. [6] describe the analysis of
open curves using the square-root function (SRF). The same general principles presented in these
papers, i.e. the use of an elastic metric for shape analysis and a path-straightening approach
to construct geodesics, apply here. The elastic metric, which is a Riemannian metric originally
proposed by Younes [13], allows a curve to stretch and bend as it deforms along a geodesic. The
path-straightening method [14] uses an arbitrary path to initialize the geodesic between two curves;
the geodesic is iteratively computed using variational methods.

The mathematical tools we use enable us to define a representation space for open curves, ensure
that the curves are invariant to certain shape-preserving transformations and compute geodesic
distances between two curves. Each space defined uses a unique combination of features and, by
extension, invariances but they share common procedural steps. These are outlined below:

1. Each fiber or sulcal curve is represented as an open continuous parameterized curve, β, as
seen in Figure 1.

2. In order to compare curves we use elastic curve matching and for this the parameterized curve
β is represented by a function. With the choice of function representation we can make the
curve invariant to translation. We can also, at this stage, make the curve invariant to scale
by manually scaling it.

3. The representation space described above (2) is a preshape space, C, because many curves
that are rotated and reparameterized versions of each other can actually be different elements.
To unify these different representations of the same curve, one defines an equivalence class of
functions. The set of all these equivalence classes is called the shape space S.
(Note that the terms preshape space and shape space are used in a general sense for the
representation spaces in manifolds S1 − S5. The methodology we use is an extension of work
done in shape analysis where these terms were first applied and for consistency we use the
same nomenclature for all the feature spaces.)

4. A Riemannian structure is imposed on S and curves are compared by computing geodesics
between their representations in S. The geodesic length is a quantification of the difference
between two curves in the joint feature space under consideration. The geodesics are computed
using numerical algorithms.

We detail these steps describing the representations, the invariances and the computation of dis-
tances in the sections below. Figure 3 illustrates these steps and Figure 4 the relationship between
the manifolds.

2.1 Representation Space

The curve is represented in an L2 space of square integrable functions first in a preshape space and
then in a shape space which is a quotient space of the preshape space. There are thus two levels of
representation. In this section, we will discuss the representation space under four headings: the
curve representation, the function representation, the preshape space and the shape space.
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2.1.1 Curve Representation

Let β : [0, 1]→ R3 be an open continuous parameterized curve such that its speed ‖β̇(t)‖ is non-zero
everywhere. The parameterization determines the rate at which the curve is traversed. The norm

‖β‖ =
√∫ 1

0 ‖β(t)‖2dt is a square-integrable function so we can refer to the space of all such curves

as L2([0, 1],R3) or more simply L2.
An advantage to using continuous curves instead of landmarks which are reference points along

the curve is that we avoid the problems associated with the selection of these points which many of
the existing approaches to shape analysis have to contend with. As a trade-off, tools from functional
analysis are needed.

2.1.2 Function Representation

The curve β is represented either by the square-root velocity function (SRVF) or the square-root
function (SRF). These two function representations are important for the following reasons: First,
the use of the L2 metric on the space of SRVFs and SRFs generates an elastic metric and a frame-
work for elastic shape comparisons; Second, these functions preserve the L2 metric under reparame-
terization (see Section 2.3); Lastly, a versatile framework can be built around these representations–
the shape space can be easily modified and different combinations of features included.

Figure 1: β : [0, 1]→ R3 is an open continuous parameterized curve. A sulcal curve or white matter
fiber can be described as an open curve β.

SRVF The square-root velocity function of the curve β is

q(t) =
β̇(t)√
‖β̇(t)‖

, q : [0, 1]→ R3 . (1)

From Eqn. 1 we see that q is only dependant on the velocity term β̇. It is therefore called the
square root velocity function and the norm ||q|| is the square root of the instantaneous speed
along the curve β. It is possible to recover the original curve β, within a translation, using β(t) =∫ t

0 ||q(s)||q(s)ds. The function q is invariant to translation in R3. By manually scaling the curves
to the same length we can also remove the scale information at this stage.

SRF The square-root function is defined thus:

h(t) =

√
‖β̇(t)‖β(t) , h : [0, 1]→ R3 . (2)
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Since h is dependant on β, the full set of attributes of the open curve, including global transla-

tion, are incorporated in the expression. The
√
‖β̇(t)‖ term is a scalar that ensures invariance to

reparameterization.
It is not easy to recover the curve β from the SRF because this involves solving a higher-order

ordinary differential equation. Consequently, we cannot draw geodesic paths between two curves
or compute sample statistics, though we can still compute distances between the curves. Because
of this limitation, we only apply the SRF to cases where we want to include position as a feature;
for all other cases, we use the SRVF.

2.1.3 Preshape Space

The space of all square-root or square-root velocity representations of curves C is an infinite dimen-
sional vector space of all functions in L2([0, 1],R3). It has the form:

C = {f : [0, 1]→ L2([0, 1],R3)},

where f is the function representation of the curve.
An inner product can be defined on Tf (C), the tangent space of C at the point f :

〈w1, w2〉 =

∫ 1

0
〈w1(t), w2(t)〉 dt, w1, w2 ∈ Tf (C).

This metric, defined infinitesimally using elements of the tangent space at a point, is the Rie-
mannian metric. The use of the L2 metric on the space of square-root velocity representations
generates an elastic metric; the Riemannian metric is therefore an elastic metric in this space.

The differentiable manifold C with this Riemannian metric is a Riemannian manifold. With
this Riemannian structure we can derive the following: (i) geodesic paths between curves; (ii) the
exponential map; (iii) the inverse exponential map.

The elements of C do not represent the shape of a curve uniquely. A reparametrization of
β, using an element γ ∈ Γ, where Γ is the group of diffeomorphisms (a smooth bijective map
with smooth inverses) from [0, 1] to itself, results in a different square-root velocity function while
preserving its shape. Similarly, any rigid rotation of β changes q but not its shape. Since C has
many elements of the same shape, we call it the preshape space of open curves. (As noted before,
we use the term preshape space in a general sense; it applies to the preshape space of S1 − S4, as
well as to S5.)

In this framework, the three different preshape spaces we use are:

1. C1 = {h : R3 → R3}. This is the preshape space for the S1 manifold. The h-function (SRF)
is used here.

2. C2 = {q : R3 → R3}. This is the preshape space for the S2 and S3 manifolds. The q-function
(SRVF) is used since the space is invariant to translation.

3. C3 = {q : [0, 1] → R3|
∫ 1

0 ‖q(t)‖
2dt = 1}. This is the space of all unit-length, open, elastic

curves and is the preshape space for S4 and S5. The q-function is used and the curves are
scaled to remove variability due to scale. The space is thus invariant to translation and
uniform scaling.

Meena Mani PhD Thesis, 2011



Comprehensive Riemannian Framework for Open Curves

2.1.4 Shape Space

To unify all the different representations of the same curve, we define an equivalence class or
orbit of functions. In cases where invariance to reparameterization and orientation is sought, the
orbit has the form

[f ] = {(γ,Of)|γ ∈ Γ, O ∈ SO(3)}.

Here f is the function representation, i.e., the h-function or the q-function; Γ is the reparame-
terization group; SO(3) is the 3-dimensional rotation group and (γ,Of) is the reparameterized
and rotated curve. Equivalence relations are a by-product of group operations. Group actions
with which we achieve invariance to reparameterization or orientation are more fully described in
Section 2.2.

The elements of the orbit are considered equivalent, but the orbits themselves are distinct and
do not intersect; collectively they define a disjoint set which is the shape space: S = C/(Γ×SO(3)).
This is now a quotient space of the preshape space C and has unique elements.
(As with preshape space, the term shape space is generic to all five feature spaces, S1 − S5. These
manifolds, discussed in Sections 3.1–3.5, are differentiated by the preshape spaces and equivalence
classes that define them; only S5 is an actual shape space).

There is a second type of equivalence class we are interested in. For manifolds S1, S2 and S4,
invariance to reparameterization but not to orientation is desired. The orbit in this case has the
form

[f ] = {(γ, f)|γ ∈ Γ}

and the corresponding quotient space is S = C/Γ.
Since the shape space S is a quotient space of the preshape space C, it inherits the Riemannian

metric from C. With this structure, we can compute a geodesic distance in S between two orbits
[f1] and [f2]. More details on geodesic distance computations are provided in Section 2.3.

2.2 Invariances, Equivalence Relationships

Since the shape of an object does not change when it is translated, scaled or rotated, an important
requirement in shape analysis is that metrics be invariant to these transformations. Parameter-
ized curves require an additional invariance. A reparameterization only changes the speed with
which a curve is traversed, not its shape. Reparameterization is thus another shape preserving
transformation. Metrics should be invariant to it as well.

There are two ways in which invariances to transformations are achieved. The first comes
directly from the function representation. With the choice of function we can remove translation
or scale information. In the S2 and S3 manifolds, for instance, we remove translation and in the S4

and S5 manifolds we remove both translation and scale. The second way to achieve invariance to
transformations is by establishing equivalence classes. We elaborate on this in Sections 2.2.3 and
2.2.4.

We apply the four transformations, translation, nonrigid uniform scaling, rigid rotation and
reparameterization to the shape manifold, S5. These transformations are discussed below. The
invariance requirements for the four other manifolds, S1 −S4, are different but they are dealt with
in a similar manner.
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2.2.1 Translation

The shape+orientation+scale+position manifold, S1, includes position information and so we want
the function representation we use to reflect this. For this manifold, the value of the function is
designed to change with the translation or the change in position of the curve.
The four other manifolds, S2 − S5, do not include position as a feature and are invariant to trans-
lation. The function representation, q, used in those cases, is expressed exclusively in terms of the
time derivative of the curve, β, and does not have a position component.

2.2.2 Scale

In order to remove the influence of the scales of curves in the quantitative analysis, we can rescale
them to be of the same length. The rescaling, which is done with the preshape representa-
tion, leaves the function representation, q, and the Riemannian metric unchanged. The preshape
space, however, is reduced. It is computationally convenient to scale the curve, β, to unit length;∫ 1

0 ||β̇(t)||dt =
∫ 1

0 ||f(t)||2dt = 1 then holds. Since they have unit norm, the set of all functions
associated with curves of length one are elements of a hypersphere in L2. The differential geometry
of a sphere is well-known and because of this, analysis and computations in subsequent steps is
greatly simplified.

Two of the manifolds we consider, shape, S5, and shape+orientation, S4, are invariant to scale
and receive this treatment. The shape attribute is by definition invariant to scale. In the case of
the shape+orientation space, orientation, not scale, is added to the shape representation. Thus,
this manifold retains the scale invariance of the shape space.

2.2.3 Reparameterization

The curve β is parameterized. This parameterization introduces an additional source of variability
since arbitrary parameterizations are included in the representation. For any two curves, β1 and
β2, different parameterizations, in general, result in different distances between them. We account
for this variability by applying ideas from group theory. The shape of the curve does not change
due to reparameterization so we would like to treat this mapping as we do rigid rotations and
other shape-preserving transformations. We define a reparameterization group (i.e. the set of all
reparameterized curves) and the action of this group on the preshape space results in reparameter-
ization orbits. The elements of these orbits are equivalent. This enables us to compare orbits of
curves, a comparison that is now independent of parameterization.

Γ, as noted before, is the set of all orientation-preserving diffeomorphisms (i.e., the direction at
different points along the curve do not change due to the diffeomorphism). For the SRVF, i.e. the
q-function, the map, C × Γ→ C, is a group action defined by:

(q, γ)→
√
γ̇(qoγ).

The new function (q, γ) is the reparameterized curve and its distance from the original function q,
is, in general, non-zero. We define two elements q1 and q2 as equivalent (i.e. q1 ∼ q2) if for some
γ ∈ Γ, q2 = (q1, γ). A set of equivalent elements constitute an equivalence class:

[q] = {(q, γ)|γ ∈ Γ}.
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We see that the equivalence class, which is obtained as a result of the group action Γ on C, enables
us to achieve invariance to reparameterization. The equivalence classes partition C into disjoint
sets. The quotient space that results is S = C/Γ.

For the SRF, i.e. the h-function, the group action C × Γ→ C is defined by:

(h, γ)→
√
γ̇(hoγ).

Since the parameterized curve, β, is the starting point for all the manifolds, S1 − S5, we need
to ensure invariance to reparameterization for each one of them.

2.2.4 Orientation

Let O ∈ SO(3) be a rotation matrix and let SO(3), the set of all possible rotations in R3, act
isometrically (i.e., it is a distance-preserving map) on C as follows: SO(3) × C → C. (O, q) =
{Oq(t)|t ∈ [0, 1]} is the rotated curve that results from this group action. In cases where we want
the analysis to be invariant to this group action we define the orbit of q under SO(3) as

[q]o = {(Oq)|O ∈ SO(3)} ⊂ C.

The elements of [q]o are equivalent; they are rotated versions of each other.
The action of SO(3) is combined with the action of Γ since, as noted in Section 2.2.4, the

quotient spaces S1−S5, need to also be invariant to reparameterization. The joint action of Γ and
SO(3) gives the larger orbit

[q] = {(γ,Oq)|γ ∈ Γ, O ∈ SO(3)} ⊂ C. (3)

The corresponding quotient space is S = C/(Γ × SO(3)). We will consider how the two group
actions, Γ and SO(3), interact next.

2.2.5 The Product Group (Γ× SO(3))

There are two important properties associated with the product group (Γ× SO(3)):

1. The actions of SO(3) and Γ on C commute. It is due to this that we can form an equivalence
class (Eqn. 3) and define the action of the product group. We also make use of this property
when we find distances and need to optimize iteratively (see Section 2.3.1).

2. The joint action of (Γ × SO(3)) on C is by isometries with respect to the distance metric.
This implies that the inner product on T[q], the tangent space to S, is independent of the
choice of q̃ ∈ [q]. The geodesic distance between two points in S is given by:

dS([q]0, [q]1) = min
q̃1∈[q1]

dC(q0, q̃1). (4)

2.3 Geodesics and Distances

We can compare curves by quantifying their differences using a distance function. The standard
L2 metric, often used in quantitative analysis of fibers, is given by

‖β1 − β2‖2 =

√∫ 1

0
‖β1(t)− β2(t)‖2dt.
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This metric is not, in general, invariant to reparameterizations, i.e.

‖β1 ◦ γ − β2 ◦ γ‖ 6= ‖β1 − β2‖.

Since we require invariance to reparameterization, we solve this issue by introducing the SRF and
the SRVF representations. These functions preserve the L2 distance under reparameterization so
that for any two curves β1, β2, with the corresponding functions f1 and f2, and any γ ∈ Γ, we have
that ‖(f1, γ) − (f2, γ)‖2 = ‖f1 − f2‖2. Because of this equality, we are able to define the distance
between the two curves as

d(β1, β2) = γ∗ = argmin
γ∈Γ

(‖f1 − (f2, γ)‖2) . (5)

The minimization is performed by taking the path-straightening approach and using the standard
dynamic programming algorithm for the computations. This is described in Section 2.3.1.

For the S3 and S5 manifolds, invariance to orientation is sought. Since we need to take the
variability due to reparameterization also into account, the distance function now becomes

d(β1, β2) = γ∗ = argmin
γ∈Γ,O∈SO(3)

‖f1 −O(f2, γ)‖2 . (6)

We solve this with a joint optimization described in Section 2.3.1.
In our open curve analysis, we are interested in the distance function in S, the shape space.

This distance function is inherited from C. The distance between two curves β1 and β2 is the
distance between their orbits [β1] and [β2] and is the pairwise shortest distance between elements
in these two orbits. Once the optimal reparametrization and/or orientation of f2 are obtained, we
can compute the geodesic path between the orbits [f1] and [f2]. Figure 2 shows the geodesic path
between two curves in the S2 − S5 manifolds.

2.3.1 Optimization

The optimal distance is obtained by minimizing the cost function. For optimization over reparam-
eterization, Γ, we use dynamic programming or gradient descent. When we need to optimize over
both orientation and reparameterization, we perform a joint optimization; the optimal Γ is obtained
by dynamic programming and the optimal orientation over SO(3) is computed using Procrustes
alignment. We briefly describe these procedures in this section.

Dynamic Programming Dynamic programming (DP) is a numerical optimization algorithm
where we obtain an optimal path by solving the problem sequentially. At each stage we select an
optimal trajectory from all the possible trajectories by optimizing (minimizing) the cost function.
For this analysis, the cost function is the distance function (Eqns. 5 and 6) that matches the point
f2(γ(t)) with the point f1(t). Since the cost function is defined by the L2 norm, it is additive over
the path (t, γ(t)) and can be cast as a DP problem. The algorithm forms a graph from (0, 0) to
(1, 1) in R2 and searches over all the paths on that grid, such that the slope of the graph is strictly
between 0o and 90o. This constraint is placed so that 0 < γ̇∗ < ∞. The cumulative cost over the
entire grid gives us an approximation to γ∗. The DP algorithm gives an exact solution.

A gradient-based optimization is an alternative to DP. The gradient-descent gives a local so-
lution. Its estimate for γ∗ is less accurate than DP but, as a trade-off, it is computationally less
expensive.
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Joint Optimization Consider the optimization problem:

(γ∗, O∗) = argmin
γ∈Γ,O∈SO(3)

‖f1 −
√
γ̇Of2(γ)‖2 . (7)

We encounter this problem with the S3 and S5 manifolds where the curves are invariant to both
orientation and reparameterization and it requires a joint optimization solution. The individual
solutions for optimal orientation and registration are given below:

1. Optimal Rotation: For a fixed γ ∈ Γ, the optimization problem over SO(3) in Eqn.
7 is solved by Procrustes alignment. We find O∗ = UV T where O∗ is the optimal ro-
tation for aligning two curves and USV T is the singular valued decomposition of A =∫ 1

0 f1(t)(
√
γ̇f2(γ(t)))Tdt. (In cases where the determinant of A is negative, one needs to

modify V by multiplying the last column by −1. We have O∗ = UṼ T in this case. This is
a known result from rigid alignment of objects when the points across objects are already
registered.)

2. Optimal Registration: For a fixed O, the optimization problem in Eqn. 7 over Γ can be
solved using the DP algorithm described above. The cost function is defined by the L2 norm
and, thus, is additive over the path (t, γ(t)). The algorithm forms a finite-dimensional grid
in [0, 1]2 and searches over all the paths on that grid, satisfying the required constraints, to
obtain an approximation to γ∗.

Since we have algorithms for optimizing over the two components individually, we can go back and
forth between the two steps till convergence is reached.
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S2: shape+orientation+scale S3: shape+scale

S4: shape+orientation S5: shape

Figure 2: Evolution of one curve into another along the geodesic path. The two curves
are DTI fibers that vary in shape, scale and orientation as seen in the S2 manifold. The reparam-
eterization allows for bending and stretching of curves. This elastic matching results for a smooth
and natural transition between curves. In S3, the two curves are oriented similarly so we see the
evolution of the shape and scale. In S4, they have the same scale so we see the transformation of
shape and orientation. The two curves have the same orientation and scale in S5, and so we see
one shape transform into the other. Figure credit: Anuj Srivastava/FSU.
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3 Description of the Riemannian Manifolds, S1 − S5

In this section, we present five Riemannian manifolds which capture five different combinations
of the physical features of interest. We also provide metrics for comparing curves based on these
features. In particular, for each manifold we provide: (i) a geodesic distance between curves that
depends only on selected features (and is independent of the parameterization of curves), and (ii) a
geodesic path between the two curves. We begin with S1, a space where all the features are utilized.
Each subsequent manifold is restricted to fewer features and S5, the last of these, uses only shape.
Table 1 is a helpful summary of the manifolds and their preshape spaces and shape spaces.

3.1 Shape, orientation, scale and position, S1

We start by considering a situation where we are interested in comparing curves using all the four
physical features – shape, scale, position and orientation. This might be useful when one of the
four feature vectors (say position) predominates and the other three features are used to fine-tune
the classification of curves. We shall see an example of this in Appendix ?? where we attempt to
cluster and label sulci.

Preshape space: In this feature space, we use the square-root function (SRF) to represent the
curve β:

h(t) =

√
‖β̇(t)‖β(t) , h : [0, 1]→ R3 .

The SRFs are elements of the full L2 space so the preshape space is:

C1 = {h ∈ L2([0, 1],R3)}.

Shape space: Since orientation, scale and translation are included in the representation, the
only computation we need consider is invariance to reparametrization. The shape space is thus,
S1 = C1/Γ.

When comparing two curves, we look at the difference between their SRFs in the shape space.
For a curve β, the curve β̃(t) ≡ β(γ(t)) is simply the old curve with a new parameterization. For
this reparameterized curve β̃, the SRF is given by h̃(t) =

√
γ̇(t)h(γ(t)). We use (h, γ) to denote this

reparameterized SRF. Now, it can be shown that for any two curves, β1, β2, with the corresponding
SRFs, h1 and h2, and any γ ∈ Γ, we have that ‖(h1, γ) − (h2, γ)‖2 = ‖h1 − h2‖2. Because of this
equality, we can define a distance between the two curves as:

d1(β1, β2) = min
γ∈Γ

(‖h1 − (h2, γ)‖2) . (8)

This minimization is performed using the standard dynamic programming (DP) algorithm, and it
results in a quantification of differences in curves that is associated with the aforementioned four
features. The geodesic path between the curves is the straight line:

ψ(τ) = (1− τ)h1 + τ(h2, γ
∗) , (9)

where γ∗ is the optimal reparameterization obtained earlier in minimization using DP.
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3.2 Shape, orientation and scale, S2

Here we consider the case where we compare curves using all the feature information except position.
The need for such computations which use shape, scale and orientation distances may arise when
the focus of our study is a localized section of brain anatomy.

Preshape space: For this feature space we use the q-function to represent β:

q(t) =
β̇(t)√
‖β̇(t)‖

, q : [0, 1]→ R3 .

This function is different from the square-root function used in Section 3.1 in that this definition is
based only on the velocity function β̇. Thus we call it the square-root velocity function (SRVF) [2].
Since this function is invariant to a global translation of β, analysis based on it will not depend on
the global coordinates of the curves. The SRVFs are elements of the full space but since we use q
instead of h we define a new preshape space:

C2 = {q ∈ L2([0, 1],R3)}.

Shape space: Since we want to include orientation and scale in the computations, the only
invariance we need to consider is reparameterization. The shape space is thus, S2 = C2/Γ.

The SRVF of the reparameterized curve is given by (q, γ) ≡
√
γ̇(t)q(γ(t)), where q is the

SRVF of the original curve. As before, it can be shown that for any two curves β1, β2, with the
corresponding SRVFs q1 and q2, and for any γ ∈ Γ, we have that ‖(q1, γ)− (q2, γ)‖2 = ‖q1 − q2‖2.
Once again, we can define a distance between the two curves as:

d2(β1, β2) = min
γ∈Γ
‖q1 − (q2, γ)‖2 . (10)

This minimization is performed using the DP algorithm, and it results in a quantification in dif-
ferences in curves based on the three features–shape, orientation, and scale. The geodesic path
between the two curves is a straight line given by:

ψ(τ) = (1− τ)q1 + τ(q2, γ
∗) , (11)

where γ∗ is the optimal reparameterization obtained by DP.

3.3 Shape and scale, S3

This combination of features allows us to compare curves based on their shapes and scales. For
WM analysis, we note that the lengths of WM tracts are determined by the brain regions they
connect. Two prominent fiber bundles, the inferior longitudinal fasciculus (ilf) and inferior fronto-
occipital fasciculus (ifo) are both long. They connect the occipital lobe to the temporal lobe in
the first case and to the frontal lobe in the second case and can be separated from each other by
their shape. Short association fibers connecting adjacent gyri intermingle with these fiber bundles
but can be separated out because of their length. Sulcal curves also come in different lengths; the
central sulcus, which is a primary sulcus, is long, the tertiary sulci are much shorter. Being able to
discriminate sulci and fibers on the basis of their shape and length is important.
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Preshape space: For the shape+scale manifold, S3, we use the same SRVF representation as
the S2 (shape+orientation+scale) manifold. Since the SRVFs are elements of the full space the
preshape space is once again C2 = {q ∈ L2([0, 1],R3)}.

Shape space: Curves in the S3 feature space are invariant to orientation. To remove the rigid
motions from the S2 representation, we rotate the curve β by a rotation matrix O ∈ SO(3), where
SO(3) the set of all possible rotations in R3. The shape space in this case is S3 = C2/(Γ× SO(3)).

The SRVF of the rotated curve is given by Oq where q is the SRVF of the original curve. We
also need to ensure invariance to reparameterization. Consequently, the SRVF of a rotated and
reparameterized curve is given by

√
γ̇(t)Oq(γ(t)). The distance function is a joint optimization

over SO(3) and the group of orientation preserving diffeomorphisms, Γ. It is given by:

d3(β1, β2) = min
γ∈Γ,O∈SO(3)

‖q1 −O(q2, γ)‖2 . (12)

Let γ∗ and O∗ be the reparameterization and the rotation that minimize the right side in this
equation. Then, the geodesic path between any two curves, which once again is a straight line, is:

ψ(τ) = (1− τ)q1 + τ(O∗q2, γ
∗) . (13)

3.4 Shape and orientation, S4

The short U-fibers–white matter that connect adjacent gyri–are similar in shape but have different
orientation. There are other structures that are identical in most respects but because of the
bilateral symmetry in the brain, are oppositely oriented. Orientation is thus an important feature
in brain image analysis.

We describe shape+orientation distances in this section. In Chapter 10, we use these distances
along with shape distances to detect changes in the curvature of the corpus callosum along the
median plane.

Preshape space: For the shape+orientation manifold, S4, we begin with the SRVF of the S2

(shape+orientation+scale) manifold and remove the scale component. To do this, we manually
rescale the curves to be of the same length as described in Section 2.2.2. The mathematical
representation of the SRVF remains the same as in S2 but the space of SRVFs, reduces from the full
L2 space to a hypersphere as a result. This preshape space, the space of all unit-length (the curves
are usually scaled to unit length) elastic curves, is defined as C3 = {q : [0, 1]→ R3 |

∫ 1
0 ||q(t)||

2dt =
1}.

The advantage of using a sphere is that the differential geometry is well-known and analytical
expressions can be found for exponential maps, inverse exponential maps and geodesic paths. For
example, if q1 and q2 are two elements of a unit hypersphere, the geodesic distance between them
is given by the length of the shortest arc connecting them on the sphere. This length is dC3 =

cos−1(
∫ 1

0 〈q1(t), q2(t)〉 dt).

Shape space: As with the S1, S2, and S3 manifolds, invariance to reparameterization is achieved
by the action of the group of diffeomorphisms, Γ, on C3. We shall denote this by (q, γ) =√

˙γ(t)q(γ(t)) and define the equivalence class of q as [q] = {(q, γ) | q ∈ S∞, γ ∈ Γ}. The shape
space is S4 = C3/(Γ). Note that we do not remove the SO(3) group action on C3.
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The distance between two curves does not depend on the reparameterization of the curves, i.e.,
for any q1, q2 and γ,

cos−1(

∫ 1

0
〈q1(t), q2(t)〉 dt) = cos−1(

∫ 1

0
〈(q1, γ)(t), (q2, γ)(t)〉 dt).

This leads to the definition of a distance between two curves which depends only on their shapes
and orientations. The geodesic distance is calculated by minimizing the following:

d4(β1, β2) = min
γ∈Γ

(
cos−1(

∫ 1

0
〈(q1, γ)(t), (q2, γ)(t)〉 dt)

)
. (14)

S4 is a sphere so the geodesic or shortest path between the two curves is a great circle. It can be
specified analytically by:

ψ(τ) =
1

sin(θ)
[sin(θ − τθ)q1 + sin(τθ)(q2, γ

∗)] , (15)

where θ = d4(β1, β2).

3.5 Shape manifold, S5

White matter fiber bundles have a well-defined shape and structure which is determined by the
regions they connect and the constraints of the surrounding anatomy. Shape analysis of white
matter fibers is an active area of study and is a starting point for our investigations in geometric
modeling.

Preshape space: If we are interested in analyzing only the shape of 3-dimensional open curves,
we must achieve invariance to translation, scaling, rotation and reparametrization. Since the q-
function is defined in its entirety by the derivative of β, translational invariance is automatically
removed. In order to achieve scale invariance, we manually scale all curves to be of unit length.
This allows us to define the preshape space, C3 = {q : [0, 1] → R3|

∫ 1
0 ||q(t)||

2dt = 1}. This is the
space of all unit length, elastic curves. We define a Riemannian metric and the tangent space on
this manifold.

Shape space: We define the shape space to be:

S5 = C3/(Γ× SO(3)).

The elements of S5 are the orbits of the type:

[q] = {
√
γ̇Oq(γ)|q ∈ S∞, γ ∈ Γ, O ∈ SO(3)} .

The shape space S5 inherits a Riemannian structure from the preshape space C3. The geodesic
distance between any two orbits [q1] and [q2] is given by:

d5(β1, β2) = dS5([q1], [q2]) = min
γ∈Γ,O∈SO(3)

dC3(q1,
√
γ̇Oq2(γ)) , (16)

where dC3 is the distance in the preshape space. A closer look at that distance function reveals the
following:

argmin
γ∈Γ,O∈SO(3)

cos−1
〈
q1,
√
γ̇Oq2(γ)

〉
= argmin

γ∈Γ,O∈SO(3)
‖q1 −

√
γ̇Oq2(γ)‖2 , (17)
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Table 1: Summary of the Comprehensive Riemannian Framework Manifolds

Manifold function preshape quotient
representation space space

shape +

h(t) =
√
‖β̇(t)‖β(t) S1 = C1/(Γ)

orientation + C1

scale + L2 space
position
shape +

q(t) = β̇(t)√
‖β̇(t)‖

C2

L2 space
S2 = C2/(Γ)orientation +

scale
shape +

q(t) = β̇(t)√
‖β̇(t)‖

C2 S3 = C2/(Γ× SO(3))
scale L2 space
shape +

q(t) = β̇(t)√
‖β̇(t)‖

C3 S4 = C3/(Γ)
orientation hypersphere

shape q(t) = β̇(t)√
‖β̇(t)‖

C3 S5 = C3/(Γ× SO(3))
hypersphere

The manifolds, S1–S5, are quotient spaces that result when the reparameterization group, Γ, or the
product group, (Γ× SO(3)), are removed from the respective preshape spaces. The optimizations
are done using DP and Procrustes alignment. C1 and C2 are different L2 spaces since the curves
have different function representations. C3 is a unit hypersphere because the curves have been
scaled to unit length to remove the effects of scale.

where the ||.|| is simply the L2 norm on the representation space. This equality implies that
minimizing the arc length on a unit sphere is the same as minimizing the chord length. If one is
minimized then so is the other. We can therefore use the L2 norm since it is computationally more
efficient.
The actual geodesic between [q1] and [q2] in S5 is given by [ψt], where ψt is the geodesic in C3

between q1 and
√
γ̇∗O∗q2(γ∗). Here (O∗, γ∗) are the optimal transformations of q2 that minimize

the right side in Eqn. 16. For θ = d5(β1, β2), the geodesic path is a great circle given by:

ψ(τ) =
1

sin(θ)
[sin(θ − τθ)q1 + sin(τθ)(O∗q2, γ

∗)] .
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Figure 3: Relationship between manifolds S1−S5. There is a hierarchy of steps that takes us
from the curve β to its representation in the shape space. S4 and S5, for instance, follow the same
mathematical procedures but the S5 space is in addition also invariant to orientation.
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Figure 4: Manifolds S1−S5 and the invariances associated with them. The comprehensive
Riemannian framework allows for flexible feature combinations. Each of these constitute a Rieman-
nian manifold and is associated with a subset of the four shape-preserving invariances: translation,
orientation, scale and reparameterization. To visualize this, translation, orientation and scale are
superimposed on an xyz-coordinate system. In the figure, which is multiperspective, since S1 in-
cludes position (translation), orientation and scale as features along with a SRF representation, it
is located on the −ve side of the x−, y− and z−axes. S2, which is invariant to translation and
uses the SRVF representation, is on the +ve side of the x−axis. S3, invariant to translation and
orientation, is on the +ve x−y quadrant; S4, invariant to translation and scale, is on the +ve x−z
quadrant. Finally S5, the shape manifold, is invariant to translation, orientation and scale and has
+ve x, y, z values.
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