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Abstract. The task of classifying or labeling cortical sulci is made diffi-
cult by the fact that individual sulci may not have unique distinguishing
features and usually need to be identified by a multivariate feature set
that takes the relative spatial arrangement into account. In this paper,
classical multidimensional scaling (MDS), which gives a geometric inter-
pretation to input dissimilarity data, is used to classify 180 sulci drawn
from the ten major classes of sulci. Using a leave-one-out validation strat-
egy, we achieve a success rate of 100% in the best case and 78% in the
worst case. For these more difficult cases, we propose a second stage of
classification using shape based features. One of these features is the
geodesic distance between sulcal curves obtained from a new open curve
representation in a geometric framework.
With MDS, we offer a simple and intuitive approach to a challenging
problem. Not only can we easily separate left and right brain sulci, but
we also narrow the classification problem from, in this case, a 10-class
to a 2-class problem. More generally, we can identify a region-of-interst
(ROI) within which one can carry out further classification.

1 Introduction

The large variability present in the human brain cortex makes it one of the most
challenging of brain anatomies to segment, label, classify or model. The sulci,
which are fissures or grooves in the cortical surface (Figure 1), vary not just in
their shape and placement, but even in their number. Even so, the underlying
architectonic and functional organization of the brain influences to some degree
the size, shape and placement of the folding patterns [1]. The length, depth,
the pure shape (i.e. after removing scaling, rotation and translation), the spatial
arrangement and orientation of some of these individual sulci are characteristic
features shared across a population. Collectively, these features can form the
basis for classification, labeling and the study of selective differentiation of tissue
that results from neurodegenerative pathologies, the action of genes or even as
a result of cognitive activity. This study fills an important need and can lead
to such wide-ranging applications as landmark or guidance-based neurosurgical
procedures or the differential diagnosis of degenerative brain disease.

Accurate sulcal identification can be a challenge even for expert neuroanatomists.
A strategy that is used in manual annotation is to identify sulci in relation to



the major sulci for which we can show consistent anatomical correspondence be-
tween subjects. The major sulci provide a context and coupling this information
with shape attributes, which are usually not unique to a class of sulci, helps
in identification [2]. The automated and semi-automated labeling methods that
incorporate this idea typically involve using a large feature set and computa-
tionally intensive algorithms [3]. We propose a simpler approach, not considered
before, which uses only distance or dissimilarity data to individually identify
unlabeled sulci against a reference graph (Figure 1(b)).

Multidimensional scaling (MDS) is a technique that gives a geometric inter-
pretation to dissimilarity data and is a natural tool for such an application. By
minimizing a loss function calculated for different possible configurations, we can
assign a set of coordinates to objects. The resulting map, or embedding, places
objects that have similar attributes close to each other. MDS can be used as a
classification tool by introducing unlabeled sulci to an existing map. Membership
is then assigned to the nearest node using a minimum distance classifier.

There is a growing recognition, in medical image analysis, that to take advan-
tage of the full range of information presented in an image, one has to consider
shape attributes. Sulcal shape analysis has typically used a multivariate fea-
ture set to describe shape attributes such as angle, curvature, depth, length [4].
To date, little work has been done using a formal definition of shape spaces of
sulcal curves. In this paper, we use a new geometric representation for studying
shapes of three-dimensional sulcal curves using metrics invariant to the standard
shape-preserving transformation.

In Section 2 we briefly explain the MDS method and how it is used for
labeling the major sulci. Next, we present a new shape representation for open
curves in Section 3. Though the formalism itself has a wider scope, the focus in
this paper is its application to sulcal curves. In Section 4, we describe the other
features used in our dissimilarity calculations. Finally, in Section 5, we present
the preliminary results. In the discussion that follows, Section 6, we outline our
plans to develop this classification method further.

2 Classical Multidimensional Scaling (CMDS)

Multidimensional scaling is a method that allows us to compute an optimal
configuration, X, for a set of n observations using only their interpoint distances.
If ∆ = [δij ] is a non-negative, symmetric matrix of dissimilarities computed from
a set of (hidden) coordinates, Xr of rank r, with MDS, we can represent Xr as
Xd, d ≤ r, such that the distance matrix D computed from it is close to ∆.
An intermediate step would be to derive the scalar product matrix, B = XXT ,
from the squared dissimilarities by double centering. An eigen decomposition,
B = ΓΛΓT , gives us Λ, a diagonal matrix of eigenvalues, and Γ, a matrix of
orthonormal eigenvectors. X, the square root of XXT , is then ΓΛ

1
2 . Since B

is of rank d, X is also of rank d. Thus, the coordinates, X, of the embedded
configuration are implicit and need to be extracted from the Euclidean inner
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Fig. 1. (a) The five major sulci used in this study. (b) Top: Sulcal curves, in blue, form
a complex and widely varying pattern on the cortex. Bottom: Graph representation
where the distances are the edges and the sulci are the nodes. (c) An individual sulcus.
The top or superficial curve, which points in the direction of the outer cortex, is in
blue. The bottom curve is in green.

product matrix, B. The eigenvalue problem solves the optimization:

σ(x1, . . . , xn) =

n∑
i=2

i−1∑
j=1

(‖xi − xj‖ − δij)2. (1)

2.1 Out-of-sample Embedding

For classification, our objective is to introduce k additional points, y1,. . . ,yk,
without disturbing an existing representation. Using Eqn. 1 to embed n + k
points, however, gives an entirely new map. If we optimize

σ(y1, . . . , yk) = 2

n∑
i=1

k∑
j=1

(‖xi − yj‖ − ai(n+j))2 +

k∑
i=1

k∑
j=1

(‖yi − yj‖ − a(n+i)(n+j))2,

where A = [aij ] is the augmented (n+k)×(n+k) dissimilarity matrix, instead, we
can get yi, the coordinates for the k points, while xi, the original points remain
fixed. This is the out-of-sample extension of the optimization solved by Eqn. 1.
We use the numerical computation given by Trosset et al. [5] that approximates
the optimal out-of-sample embedding.



3 Elastic Shape Analysis of Sulcal Curves

We use a new square-root velocity description for shapes of three-dimensional
sulcal curves. This representation is related to the velocity function used in [6]
and to the complex square-root representation for planar curves in [7]. The
advantage of this representation, first proposed by Joshi et al. [8] for closed
curves, is that the resulting pre-shape becomes a unit hypersphere space and
one can use the geometry of the sphere for computations.

3.1 Curve Representation and Pre-Shape Space

Let β : [0, 1] → R3 be a unit-length, parameterized curve such that its speed
‖β̇(t)‖ is non-zero everywhere. We define its square-root velocity function as:

q(t) =
β̇(t)√
‖β̇(t)‖

, t ∈ [0, 1] .

The space of all square-root velocity representations of curves in R3, B, is a unit
hypersphere and submanifold of L2([0, 1],R3). Since B is a Riemannian manifold
with the inner product metric 〈w1, w2〉 , we can derive an exponential and an
inverse exponential map. We can also compute geodesic paths between curves
using

ψ(t) =
1

sin(θ)
[sin(θ − t)q1 + sin(t)q2] , (2)

where θ = cos−1(〈q1, q2〉) is the geodesic distance, denoted by dc(q1, q2), between
two points.

3.2 Shape Space

The elements of B do not represent the shape of a curve uniquely. Any re-
parametrization or rigid rotation of β, results in a different square-root velocity
function, q, while preserving its shape. We will call B the pre-shape space of
open curves. This variability can be represented using the actions of the re-
parameterization group, Γ , and the rotation group, SO(3), on B. These actions
commute and both groups act on B in an isometry. We can thus define the shape
space as:

S = B/(Γ × SO(3)).

Let [q] denote an orbit resulting from all possible re-parameterizations and rota-
tions of a curve denoted by q ∈ B. S is the set of all such orbits and it inherits a
Riemannian structure from B, under which, the geodesic distance between two
orbits [q1] and [q2] is:

ds([q1], [q2]) = min
γ∈Γ,O∈SO(3)

dc(q1,
√
γ̇Oq2(γ)) . (3)



The geodesic is given by [ψt], where ψt is the geodesic in B between q1 and√
γ̇∗O∗q2(γ∗). Here (O∗, γ∗) are the optimal transformations of q2 that minimize

dc. A closer look at that distance function reveals:

argmin
γ∈Γ,O∈SO(3)

cos−1
〈
q1,

√
γ̇Oq2(γ)

〉
= argmin
γ∈Γ,O∈SO(3)

‖q1 −
√
γ̇Oq2(γ)‖2. (4)

This equality says that to minimize the arc length on a unit sphere is the same
as minimizing the chord length.

3.3 Karcher Means of Open Curves

To get the mean shape for a given set of curves, we compute a Karcher mean,

µ̄n = argmin
[q]∈S

n∑
i=1

ds([q], [qi])
2 . (5)

A gradient-based approach to find the minimum is commonly used for finding
means on nonlinear manifolds. The extrinsic mean, µ 7→ µ/‖µ‖, is used to ini-
tialize the gradient search. We update µ by computing the exponential map,
expµ(εv̄), to get a local minimizer for the cost function in Eqn. 5.

4 Feature Set

For the MDS evaluation, we used four descriptors, position, depth, length and
orientation, in addition to shape. These contain physical information not cap-
tured in the shape of a 3D curve alone. For each of these descriptors, our features
were the distances between sulci or the class averages of sulci.

Spatial Position The mid-point of each sulcal curve was used for the position
coordinates.
Mean Depth The depth profile for each sulcus was first obtained by resampling
100 points along the length of the sulcus and computing the distance between
points on the top sulcal curve with corresponding points on the bottom curve.
The mean depth was then calculated by averaging these.

Length The length of a sulcus was computed using
∫ 1

0
‖β̇(t)‖dt, the length of

the curve β.
Orientation Using singular value decomposition (SVD), the relative orienta-
tions, O, between sulcal curves were computed for each subject.

The class average for each of these descriptors was calculated by averaging
across the 18 subjects. For the relative orientation, the average was obtained by
computing a SVD of

∑
iOi. The Karcher mean gave us the mean shape.

The distance matrix was computed using the feature distances between two
sulci. For position we computed a euclidean distance. For depth and length, we

used an absolute distance. For orientation, we used do =
‖ log(O1O

T
2 )‖√

2
, where ‖.‖



is the Frobenius norm. For shapes, the geodesic distance was used.
The composite distance between any two sulci was also computed by using a
combination of the scaled distances, d = w1ds + w2dp + w3dd + w4dl + w5do,
where the wi could be chosen by trial and error.

5 Results

5.1 Data and Initial Processing

We used a database of 18 T1-MR 3D SPGR brain images of healthy subjects,
matched for sex (male), handedness (right), and age (35± 10 years). Five major
sulci, the central, postcentral, superior frontal, sylvian fissure and superior tem-
poral, were extracted from each hemisphere using the method described in [2,
9]. This gave us 18× 10 = 180 sulci for classification. These primary sulci were
chosen because they can consistently be identified in all normal individuals. The
left and right precentral sulci were later included to test and extend the classi-
fier. This expanded the dataset to 18× 12 = 216 sulci. For analysis, the top and
bottom sulcal lines extracted from each sulcus (see Figure 1(c)), were used.

5.2 Evaluating Dimensionality, Assessing Fit

MDS reproduces a high dimensional input in a lower dimensional space. A scree
test was used to determine the dimension that best represents the sulcal data.
In Figure 2, an elbow in the plot at d = 3, represents the optimal dimension
beyond which only minor reductions in stress are achieved. The Shepard diagram,
which plots the scaled MDS distances against the original dissimilarity data, was
then used to assess fit for 2 and 3D data. A good fit is indicated by a minimal
spread in the scatter plot and evidence of a monotonically ascending relation. A
comparison between the two Shepard plots, shows that the output distances are
highly correlated to the input dissimilarities for the 3D data. As a final test, the
MDS map we obtain, reflects the actual arrangement of sulci in the brain.

5.3 Classification

Our goal was to label pre-segmented sulci making no assumptions about pre-
defined relationships or any other information. For this we designed a 10-class
MDS classifier. We evaluated the classification using leave-one-out (LOO) cross-
validation. The 18 sulci for each of the 10 sulcal classes were split 17:1 into a
training set and a testing set. As expected, the best results for the 18 LOO it-
erations were obtained when spatial distances were used for the dissimilarities.
We got an overall true positive rate of 90% and 90.6% for the top and bottom
sulcal classifiers respectively (Table 1), and were able to correctly label all the
superior frontal sulci (100%). The sylvian fissure, the most difficult class, had a
success rate of 78%. The sylvian fissure is composed of a number of small folds
that are difficult to extract completely. As a result, the features used to describe
the sylvian fissure have a noisy multimodal distribution.



Fig. 2. Evaluating the number of dimensions required to represent the data. The scree
plot (left), shows that 3 dimensions is optimal for the MDS map. The Shepard plot for
2D data (middle) shows more spread than the corresponding 3D plot (right).

Classification was also done for shape, using geodesic paths for distances, and
for scaled combinations of shape, position, length and depth. The shape classi-
fier labeled all the central sulci, which are very regular, but was less successful
with the other classes. Combining the features did not improve the success rate.
Rather, the results achieved by the spatial distance classifier were compromised
(Figure 4). The depth and length classifiers could not discriminate right and left
brain sulci, and while the orientation information improved results in cases where
the orientations of the sulci differed, these were offset by the errors introduced.

6 Discussion

Fig. 3. Depth boxplot.

An MDS spatial distance classifier offers several ad-
vantages. First, if n is the number of classes, we need

only make n(n−1)
2 distance measurements, off-line, to

construct a reference map. For classification, data
from unlabeled sulci supplement this distance ma-
trix. Second, our results suggest that we can very
quickly assign a given sulcus to a small region of the
left or right hemisphere. All 180 sulci were correctly
identified when we relaxed the classification criteria
to include the second nearest sulcus. Third, the clas-
sifier is robust to normal population variation. The
results we obtained, were for data that had not been
spatially normalized. Both the top and more stable
bottom sulcal classifiers, moreover, gave comparable
results (Table 1). We were even able to correctly iden-
tify a displaced and distended superior frontal sulcus,
taken from a tumor patient.



Central to our approach to sulcal classification is the use of a reference graph.
This imposes several constraints which narrow down possible solutions so that a
high average classification rate is achieved. The classifier works best when only
a small number of well separated sulcal classes are used in the training set. We
saw the performance degrade from 90.6% to 84.3% when two additional classes,
the left and right precentral sulcus were added (Figure 5). Based on preliminary
results and characterization, we propose a two stage classification scheme where
the spatial distance classifier will serve as a front end to identify a region of
interest. Specialized feature classifiers can then be applied in the second stage.
A depth classifier, for instance, can discriminate between the sylvian fissure(SF)
and the superior temporal sulcus(ST) (Figure 3). These two sulci were sometimes
misclassified, one for the other, with the position classifier.
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Table 1. Confusion Matrix for MDS Spatial Distance LOOCV.
The true positive rate (blue), gives the % of the sulci correctly identified in 18 LOO
tests. The off-diagonal terms (red) give the % of false negatives.

Top Sulcal Curve Bottom Sulcal Curve
True Label 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

T
es

t
L

a
b

el

Left central 1 100 16 89 16
L. postcentral 2 84 11 84
L. sup. frontal 3 100 100
L. sylvian fissure 4 84 11 84 11
L. sup. temporal 5 16 89 16 89
Right central 6 94.5 22 94.5 22
R. postcentral 7 5.5 78 5.5 78
R. sup. frontal 8 100 100
R. sylvian fissure 9 89 16 94.5 5.5
R. sup. temporal 10 11 84 5.5 94.5

Fig. 4. Confusion map for MDS classification: the shape distance results (left) improve
considerably when the shape & spatial distances (middle) are combined; the spatial
distance alone (right) gives the best perfomance.

(a) 10 sulcal classes (b) 12 sulcal classes

Fig. 5. The results for the spatial distance deteriorated when the two precentral sulci
were added, increasing the number of classes to 12. The precentral sulcus was sometimes
miscategorized as the adjacent sylvian fissure, the central or superior frontal sulcus.


