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Abstract

In the last 15 years, two strategies have emerged to address the variability of sulci
in labeling problems. The first is the use of a spatial distribution model of sulci
to match candidate brains; the second is the explicit or implicit use of graphs to
match the linkages between sulci. We base this paper on the second idea, using
multidimensional scaling (MDS) to recreate the structural relationship between
sulci in an embedded space. We implement this in a supervised learning frame-
work where unlabeled sulci, projected into the atlas space using an out-of-sample
procedure, are given class designations based on nearest neighbor search. We
take a heuristic approach in selecting the distance measure for the MDS distance
matrix. Preliminary evaluation showed that a pure shape feature distance cannot
discriminate sulci adequately but that distances based on spatial features give en-
couraging results. We evaluate 3 spatial distances designed to accommodate the
full spatial variation (position/orientation/scale). In experiments using a leave-
one-out strategy, 90% of the 180 sulci drawn from 10 sulcal classes are success-
fully classified as are data from 6 patients with cortical tumors.

1 Introduction

The cortical surface is characterized by alternating ridges and furrows, the gyri and sulci (Figure 2).
Internal changes in the brain, either due to aging or pathology, alter the cortical surface. Quantifying
and studying these changes is a first step in the differential diagnosis of disease. Image-guided
neurosurgery, where the sulci function as landmarks or provide pathways to access internal tissue,
is another application that would benefit from a systematic study of gyri and sulci.

In this paper, we describe an automatic method to label sulci across subjects, an important first
step in this study. This is a difficult problem since cortical sulci are highly variable not just across
individuals but even between the hemispheres of a brain [1]. They vary in shape, scale, placement
and branching morphology. They may be continuous (present as one uninterrupted segment) in some
individuals, fragmented (exist as multiple segments) in others and altogether absent in yet others.
This poses a problem for feature selection and classification. Figure 1 illustrates how the variability
can make feature selection difficult.

19th century illustrations such as those from Horsley [2], trace the wide variations along a sulcal
fold. A whole nomenclature has developed since then to account for the branch variations possi-
ble along a single sulcus. While accurate sulcal identification can be a challenge even for expert
neuroanatomists, there are sulci that are to some degree more consistent, and for which anatomical
correspondence can be established across subjects. These are the larger primary sulci (Figure 2(a)).
The localization of these sulci allows us to generate a probabilistic map which can be used to label
candidate sulci. A graph can also be constructed and unlabeled sulci (or the more variable secondary
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and tertiary sulci) can be identified against this reference. These two ideas have been incorporated
into automated and semi-automated labeling methods in various ways.

A straightforward implementation of the probabilistic atlas paradigm can be seen in Le Goualher et
al. [3, 4]. Statistical probabilistic anatomical maps (SPAM) [5] give the probability for each sulcal
class so that at any given location, unlabeled sulci are assigned the most probable label for that loca-
tion. A different spatial distribution model is used by Lohmann et al. [6]. A point distribution model
computes the shape of sulcal basins across a training set. Any unlabeled sulcus can be expressed as
a linear combination of the eigenvalues generated from the PCA of this shape covariance matrix; an
optimization over the linear function would give the best label.

Spatial distribution models give spatial bounds but this is not adequate to discriminate between the
sulci in a local region. They are usually combined with graphs which model connections between
sulci thus giving local context. In the combined strategy, the spatial information is used to supply
spatial priors [7, 8], localization constraints or to narrow the search space in an optimization or
matching process [9].

An example of a graph approach, where a model graph is matched to a random graph of sulci from
a test subject, is presented in Rivière et al. [10]. Sulcal features, represented as the node attributes
and neighborhood relations modeled as the edges of a graph are matched by training a set of neural
networks to optimize the potential function at each graph node. Yang and Kruggel [9] also apply
graph matching to labeling. A similarity function that uses statistical information about spatial
extent, orientation, shape and neighborhood structure is optimized using a genetic algorithm.

Mechouche et al. [11] use graph-matching in a very different way. An atlas represented via a seman-
tic ontology is matched to pre-segmented candidate brains using descriptive logic. The main engine
for the matching is a constraint solver (CSP), software that uses advanced numerical techniques that
are computationally expensive.

Distinct from these approaches, deformable atlas matching [12], a method widely used in brain
imaging to deform a template to a candidate brain, has also been been applied to the sulcal labeling
problem. Elastic or fluid deformation [13], in general, ensures a close match to local regions, but
directly applying these algorithms to the cortical surface with its complex folding patterns which
vary from subject to subject, may give many local optima [10, 3, 6, 14]. Some authors have sought
to adapt this method to the cortical surface by, for instance, first aligning sulcal landmarks which act
as surface constraints [15] or using a multi-resolution strategy which matches the lengths of sulci at
different scales [16].

The learning, graph and warping approaches typically use large feature sets and computationally ex-
pensive algorithms. In [17], 8000 features at different scales are used to learn likelihoods to generate
a probability map. Under a Bayesian formulation, the best curve is computed by dynamic program-
ming using the probability map and shape priors. In [18], a large sample space of candidate curves
is generated to learn shape priors which are used to define the potential functions of a graphical
model. In [10], once again, a large number of training features are generated by oversampling the
sulcal segments to be identified. Yang and Kruggel [9] set up graph matching as a computationally
expensive combinatorial optimization problem.

In this paper we present a simpler approach that retains the idea of a graph, but as a global represen-
tation of sulcal class data. Structural patterns of a distance graph act as a reference against which
unlabeled sulci can be matched. An example of a distance graph is shown in Figure 2(b).

Multidimensional scaling (MDS) is a natural choice for this implementation. It gives a geometric
interpretation which can be used to reproduce the structural relationships between sulci in a low
dimensional space. We can thus build a reference atlas against which unlabeled sulci, using the
same relational constraints, can be identified using nearest neighbor criterion (NN).

An important consideration with graph-based methods such as MDS, is the distance measure. In
preliminary work [19] we used a geometric shape representation for open curves. The results indi-
cate that shape distance, i.e. the geodesic distance between sulcal curves, is not a good feature for
our classification scheme. A pure shape feature is obtained after removing rotation, translation and
scaling. As part of our heuristic approach, we looked at each of these separately to determine their
effects. We found that the position-based feature, which complements the spatial structure inherent
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in our pattern matching approach, gave very promising results. Here, we extend this study to three
position based distance measures.

This paper is organized as follows: In Section 2 we explain our classification method which uses
MDS and NN for labeling the major sulci. In Section 3, we describe the distance measures used.
Section 4 has the experimental details and results. In the discussion that follows, Section 5, we
consider the performance on both healthy and pathological data and offer insights on the success of
our classification scheme.

(a) length boxplot (b) depth boxplot

Figure 1: The variability in sulcal features is seen here in the length and depth boxplots for 18
subjects. Of the 10 types of sulci shown, only the sylvian fissure (in violet, see (b)) can be identified
by a single feature, its depth measurement. This is not surprising since the deep sylvian fissure is
one of the most easily identifiable parts of the cortical surface. The other classes of sulci cannot be
separated out solely on a length or depth measurement.

(a) (b)

(c)

Figure 2: (a) The five major sulci used in this study. (b) Top: Sulcal curves, in blue, form a complex
and widely varying pattern on the cortex. Bottom: Graph representation where the distances are the
edges and the sulci are the nodes. (c) An individual sulcus. The top curve, which points towards the
outer cortex, is in blue. The bottom is green.

2 Methods

Multidimensional scaling (MDS) gives a geometric interpretation which can be used to reproduce
the structural relationships between sulci in a low dimensional space. We can thus build a reference
atlas against which unlabeled sulci, using the same relational constraints, can be identified using
nearest neighbor criterion (NN). The approach we take to classify unlabeled sulci, falls under the
ambit of supervised learning. The steps are as follows:
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1. First, using multidimensional scaling, we embed a map using dissimilarity data
computed from a database of labeled sulci.

2. Next, once again using MDS, unlabeled sulci are introduced into the embedded
space. Since this is an out-of-sample procedure, the original embedding remains
unchanged.

3. Finally, the unlabeled points are assigned using nearest neighbor classification.

In describing this combination of steps as supervised learning, we would like to emphasize two
points: First, each of the labeled nodes in the embedded space represents a class average rather
than the individual data points of a class. MDS is not used as a precursor to clustering, but only to
provide a common space to place labeled and unlabeled points. Second, the reference MDS map
is generated solely from labeled sulci and not from a combination of labeled and unlabeled sulci as
is done in semi-supervised learning. Each of the components of the labeling scheme is discussed
below.

2.1 Classical Multidimensional Scaling (CMDS)

Multidimensional scaling is a method that allows us to compute an optimal configuration, X , for a
set of n observations using only their interpoint distances. If ∆ = [δij ] is a non-negative, symmetric
matrix of dissimilarities computed from a set of (hidden) coordinates, Xd of rank d, with MDS, we
can represent Xd as Xp, p ≤ d, such that the distance matrix D computed from it is close to ∆.
An intermediate step would be to derive the scalar product matrix, B = XXT , from the squared
dissimilarities by double centering. An eigen decomposition, B = ΓΛΓT , gives us Λ, a diagonal
matrix of eigenvalues, and Γ, a matrix of orthonormal eigenvectors. X, the square root of XXT , is
then ΓΛ

1
2 . Since B is of rank p, X is also of rank p. Thus, we see that in CMDS, the coordinates,

X, of the embedded configuration are implicit and need to be extracted from the Euclidean inner
product matrix B. The eigenvalue problem solves the optimization:

min
xi∈Rp

n∑
i=2

i−1∑
j=1

(‖xi − xj‖2 − δ2
ij). (1)

2.2 Out-of-sample Embedding

For classification, our objective is to introduce k unlabeled sulci, y1,. . . ,yk, without disturbing an
existing configuration. Using CMDS to embed n + k points, however, gives an entirely new map
computed from inner products which are centered with respect to the centroid of the n + k points.
The optimization we seek instead is:

min
y∈Rd

2
n∑

i=1

k∑
j=1

(‖xi − yj‖ − ai(n+j))2 +
k∑

i=1

k∑
j=1

(‖yi − yj‖ − a(n+i)(n+j))2, (2)

where A = [aij ] is the augmented (n + k) × (n + k) dissimilarity matrix. We can get yi, the
coordinates for the k points with this while the original labeled points, xi, which were previously
computed, remain fixed. This is an exact solution for the out-of-sample problem for CMDS but it
is a nonlinear optimization problem. If, though, the second term of the objective function above
is dropped, the resulting function is convex. Solutions to this give an approximate out-of-sample
embedding. The treatment is detailed in Trosset and Priebe [20].
We use Equation 2 later, in the context of a leave-one-out strategy to assess the utility of different
data features in terms of generalisation error (as assessed with cross validation). In this instance the
x correspond to the training set and the y the test set.

2.3 Nearest Neighbor Classification

For unclassified points, embedded in the out-of-sample step described above, class membership is
determined based on their proximity to the class nodes. A minimum euclidean distance criterion is
used.
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In the nearest neighbor framework, we can also compute, as a confidence measure, the relative
probability of an unlabeled sulcus being assigned to a class. Let us consider the entire embedded
space as a Voronoi tesselation with a training node at the center of each cell. A softmin function over
distances in this space will give a continuous probability that decreases the further a point is from
a node. If d is the euclidean distance between an unlabeled point i and a node j, for n classes, the
relative probability with which an unlabeled point selects a labeled node as its nearest neighbor is:

pij =
e
−d2

ij

σ2∑n
k=1 e

−d2
ik

σ2

. (3)

The variance, σ, can be heuristically determined from training set data. Such computations cannot
be made through a spectral embedding alone.

3 Feature Set

An important consideration with graph-based methods such as MDS, is the distance measure. In pre-
liminary work [19] we evaluated position, shape, orientation, length and mean depth. We found that
the position-based feature, which complements the spatial structure inherent in our pattern matching
approach, gave very promising results. Here, we extend this study to three distance measures based
on the position distance.

3.1 Distance Measures Evaluated

We evaluate three pairwise spatial distance measures between individual sulci. Since there are many
different configurations to consider, with curves at various angles and of varying length, a measure
that is robust to this variability will give the best results.

1. Distance from mid-point: The two ends of a sulcus were used to determine a mid-point
(not usually on the sulcus). Pairwise distances were then computed from the mid-points of
two sulcal curves.

2. Mean closest point (MCP):

dMCP = mean(dm(Ci, Cj), dm(Cj , Ci))
where dm(Ci, Cj) = meani∈Ci minj∈Cj d(i, j)

This distance (dMCP ) is described in [21, 22]. For each of n equally spaced points along
curve Ci, the minimum distance to a point in curve Cj is measured. dm is the mean
of the set of these minimum distances. Since this is a directed distance, dm(Ci, Cj) 6=
dm(Cj , Ci) in general. The symmetric distance is found by computing the average of
dm(Ci, Cj) and dm(Cj , Ci). See Figure 3.

3. Median closest point (NCP): This is similar to the mean closest point, but we compute a
median for the set of minimum distances instead of a mean.

3.2 Preliminary Features Evaluated

In our preliminary evaluation [19], in addition to the position feature, we used four other descriptors,
pure shape, mean depth, length and orientation. These contain physical information not captured by
the relative position of a 3D sulcal curve alone. The features, their class averages and the distances
between the class averages are summarized below. It is these distances that we used as the distance
feature in our characterization.

1. Elastic Shape of a Curve We use the square-root velocity description for shapes of 3D
sulcal curves: q(t) = β̇(t)√

‖β̇(t)‖
where β : [0, 1] → R3 is a unit-length, parameterized curve

such that its speed ‖β̇(t)‖ is non-zero everywhere.
2. Orientation Using singular value decomposition (SVD), the relative orientations, O, be-

tween sulcal curves were computed for each subject.
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Figure 3: The set of n minimum distances from Ci to Cj used in the mean and median closest point
computation. This is a directed distance; the symmetric distance is used in the distance matrix
computations.

3. Length The length of a sulcus was computed using
∫ 1

0
‖β̇(t)‖dt, the length of the param-

eterized open curve β.
4. Mean Depth The depth profile for each sulcus was first obtained by resampling 100 points

along the length of the sulcus and computing the distance between points on the top sulcal
curve with corresponding points on the bottom curve. The mean depth was then calculated
by averaging these. The top and bottom curve are shown in Figure 2(c).

Class Averages
The class average for each of these descriptors was calculated by averaging across the subjects.
For the relative orientation, the average was obtained by computing a SVD of

∑
i Oi. The Karcher

mean gave us the mean shape.

Distances
The distance matrix was computed using the feature distances between two sulci. For position we
computed a euclidean distance. For depth and length, we used an absolute distance. For orientation,
we used do = ‖ log(O1OT

2 )‖√
2

, where ‖.‖ is the Frobenius norm. For shapes, the geodesic distance was
used.
The composite distance between any two sulci was also computed by using a combination of the
scaled distances, d = w1ds + w2dp + w3dd + w4dl + w5do, where the wi could be chosen by trial
and error.

Table 1: Feature set used in preliminary analysis
Descriptors Class Averages Distance features

1 Spatial Position euclidean distance
2 Shape Karcher mean geodesic distance
3 Orientation SVD(

∑
i Oi)

‖ log(O1OT
2 )‖√

(2)

4 Length |l1 − l2|
5 Mean Depth |d̄1 − d̄2|
(1) Training set represented by class averages
(2) Individual unlabeled sulci constitute test sulci
(3) Distance matrix computed using feature distances between two sulci

4 Data Analysis

To assess the capability, i.e. the performance and limitations of the method we propose, we evaluated
the following:
1) Preliminary analysis of spatial position, shape, orientation, length and depth
2) Evaluation of spatial position distances
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3) Evaluation of spatial position distances with a larger data set
4) Partial sulci, i.e., sulci that are split into segments
5) Tumor data
Clustering, an alternative method, has also been used to group the data. The results of the two
approaches are discussed in Section 5.

4.1 Data and Initial Processing

Subjects: We used a database of 18 T1-MR 3D SPGR brain images of healthy subjects, matched
for sex (male), handedness (right), and age (35± 10 years).
Sulci used: Five major sulci, the central, postcentral, superior frontal, sylvian fissure and superior
temporal, (shown in Figure 2(a)), were extracted from each hemisphere. This gave us 18×10 = 180
sulci for classification.
Segmentation: The sulci were extracted using the active ribbon method [4, 23]. A 1D curve,
skeletonized on the superior surface of the sulcal groove, evolves through the depth of the groove
tracing out a 2D median surface in the process. This algorithm has been adapted from the active
contour model [24].
Final form of the data: Performance was evaluated on two separate classifiers, one constructed
with the top sulcal line and the other with the bottom line of a sulcus (see Figure 2(c)).

4.2 Evaluating Dimensionality, Assessing Fit

MDS reproduces a high dimensional input in a lower dimensional space. In Figure 4, an elbow
in the scree plot at d = 3, represents the optimal dimension beyond which only minor reductions
in stress are acheived. The Shepard diagram, which plots the scaled MDS distances against the
original dissimilarity data, was then used to assess fit for 2 and 3D data. A good fit is indicated
by a minimal spread in the scatter plot and evidence of a monotonically ascending relation. A
comparison between the two Shepard plots, shows that the output distances are highly correlated to
the input dissimilarities for the 3D data. As a final test, the MDS map we obtain, reflects the actual
arrangement of sulci in the brain.

Figure 4: Evaluating the number of dimensions required to represent the data. The scree plot (left),
shows that 3 dimensions is adequate for the MDS map. The Shepard plot for 2D data (middle) shows
more spread than the corresponding 3D plot (right).

4.3 Classification

Our goal was to label pre-segmented sulci without making assumptions about predefined relation-
ships or using semantic information. For this we designed a 10-class MDS classifier. We evaluated
the classification using leave-one-out (LOO) cross-validation. The 18 sulci for each of the 10 sulcal
classes were split 17:1 into a training set and a testing set.
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4.3.1 Preliminary Characterization

The best results for the 18 LOO iterations were obtained when spatial distances were used for the
dissimilarities. Classification was also done for shape, using geodesic paths for distances, and for
scaled combinations of shape, position, length, depth and orientation. The shape classifier labeled all
the central sulci, which are very regular, but was less successful with the other classes. Combining
the features did not improve the success rate. Rather, the results achieved by the spatial distance
classifier were compromised (Figure 5). The depth and length classifiers could not discriminate
right and left brain sulci, and while the orientation information improved results in cases where
the orientations of the sulci differed, these were offset by the errors introduced using an average
orientation as a feature.

4.3.2 Spatial Distances

For the distance measured from the mid-point of the sulcal curve, we got an overall true positive
rate of 90% and 90.6% for the top and bottom sulcal classifiers respectively (Table 2), and were
able to correctly label all the superior frontal sulci (100%). The central and postcentral sulci run
parallel to each other as do the sylvian fissure and superior temporal sulcus. These were sometimes
misclassified, one for the other.

The results for the mean(dMCP ) and median(dNCP ) closest point distance classifiers were 86%
and 84% respectively (Figure 6). The MCP and NCP calculations underestimate distances when
two sulci are perpendicular. It is perhaps because of this uneven application of distances that we got
poorer results.

4.3.3 Partial Sulci

While the central sulcus and sylvian fissure are highly continuous [1], some of the other large sulci
are interrupted by buried gyri or split into 2 or 3 pieces as an artifact of the segmentation. To simulate
this, we split the test sulci into two at the mid-point. Of the 180× 2 = 360 pieces tested using LOO
cross-validation with the mid-point distance classifier, 77% were correctly labeled. This is in line
with published results [10]. The MCP and NCP classifiers performed poorly here.

4.3.4 Tumor Data

The algorithm was tested on data from 6 patients with medium to large tumors (see Figure 9). The
lesions had displaced sulci or had otherwise altered the arrangement of the surrounding cortical
tissue. The sulci in the unaffected regions were successfully labeled, i.e. they had the same error
rate as for the healthy subjects. The value in our method lies in the fact that we were also able to
classify sulci in the region surrounding the tumor.

5 Discussion

Our supervised MDS spatial distance classifier offers several advantages.

First, it is a fast and lightweight implementation of CMDS and NN search. CMDS is an O(N3)
time algorithm. For NN, we need to search through the entire training set to classify each new
point. Both of these operations are computationally intensive. By computing class averages in the
feature space, we get a compact representation of the training data, thereby significantly reducing
the computational load.
Also, because we use an out-of-sample strategy, we further limit the number of computations. For
the training distance matrix, we need only make n(n−1)

2 one-time measurements, where n is the
number of classes. These, along with the MDS reference map are computed off-line. The only
runtime computations are those that involve unlabeled sulci.

Second, our results suggest that we can very quickly assign a given sulcus to a small region of
the left or right hemisphere. 179 out of 180 sulci were correctly identified when we relaxed the
classification criteria to include the second nearest sulcus. For most of the misclassifications, the
first and second nearest sulci had almost the same probability of being assigned to the correct class
(see Section 2.3).
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As an alternative to our method, we consider clustering, a method which is also often combined
with MDS. When we tried to group the sulci using spectral clustering, 123/180 (68%) sulci were
correctly classified (see Figure 8(a)). Clustering may not be the best choice for sulcal data since
distance-based clustering algorithms do not use the structural pattern information from the graphs.
The post- and precentral sulci, for instance, both equidistant and parallel to the central sulcus but
on opposite sides, group together. Also, relying solely on distances when the data is inherently
noisy could also lead to incorrect grouping. Spectral clustering has been successfully applied to
DTI data [22], for which, the large number of fibers warrant the use of an unsupervised or semi-
supervised approach. Sulci, by contrast, are orders of magnitude fewer in number.

Third, the classifier is robust to normal population variation. The results we obtained, were for data
that had not been spatially normalized and thus representative of the full sample variation. Also,
the results for both the variable top and stable bottom sulci, each independently classified, were
comparable (Table 2).

The relational paradigm allows us to identify anatomical regions for which, because of inherent
variability, a feature set is difficult to select. We were even able to correctly identify displaced and
distended sulci, taken from tumor patients. The preliminary success with labeling tumor datasets
strongly suggests that we can design a general-purpose tool, i.e. one that can be used to identify
both normal and pathological sulcal data. In general, diagnostic tools seek to differentiate healthy
tissue from disease–tumor detection being an example. Here, we have demonstrated a method which
can unify class data for applications where it is important to do so.

The classifier works best when only a small number of well separated sulcal classes are used in the
training set. We saw the performance degrade from 90.6% to 84.3% when two additional classes,
the left and right precentral sulcus were added (Figure 7). This is a limitation of the current design.
There are ways to extend the classification however. We can, for instance, train with different sets
of small, well-separated sulcal classes. There are many ways in which these individual results can
be combined to influence the final solution.

6 Concluding Remarks

In this paper, we describe a novel scheme to label sulci which uses MDS in a supervised learning
framework. Our method is conceptually simple and easy to implement, using for the most part stan-
dard, off-the-shelf algorithms. It is computationally fast because we use a compact representation of
data and an out-of-sample procedure. It also requires no registration allowing us to use standalone
sulci from a database. We considered several distance measures in the preliminary evaluation; some,
like the scale distance, have not been widely used in medical imaging applications. Our method has
the flexibility to be used both for healthy and diseased data. While there is a need for such an appli-
cation, the conventional approach has been to design tools to differentiate rather than unify anatomy
on the basis of group differences. Finally, our method gives impressive results, accurately labeling
91% of the 180 sulci we tested.

By training with different sets of sulci, we can extend the classification and this will be the direction
for future work. Another direction for future work is to apply this classification tool in different
contexts using it to label white matter fibers bundles and other anatomical structures.
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Table 2: Confusion Matrix for Spatial Distance LOOCV (for mid-point distances).
The true positive rate (blue), gives the % of the sulci correctly identified in 18 LOO tests. The
off-diagonal terms (red) give the % of false negatives.

Top Sulcal Curve
True Label 1 2 3 4 5 6 7 8 9 10

Te
st

L
ab

el

Left central 1 94.5 16
L. postcentral 2 5.5 84
L. sup. frontal 3 100
L. sylvian fissure 4 78 11
L. sup. temporal 5 22 89
Right central 6 94.5 22
R. postcentral 7 5.5 78
R. sup. frontal 8 100
R. sylvian fissure 9 84 16
R. sup. temporal 10 16 84

Bottom Sulcal Curve
True Label 1 2 3 4 5 6 7 8 9 10

Te
st

L
ab

el

Left central 1 89 16
L. postcentral 2 11 84
L. sup. frontal 3 100
L. sylvian fissure 4 84 11
L. sup. temporal 5 16 89
Right central 6 94.5 22
R. postcentral 7 5.5 78
R. sup. frontal 8 100
R. sylvian fissure 9 94.5 5.5
R. sup. temporal 10 5.5 94.5
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Figure 5: Confusion map for classification: the shape distance results (left) improve considerably
when the shape and spatial distances (middle) are combined; the spatial distance alone (right) gives
the best perfomance.

Figure 6: Confusion map for spatial distance classification: the mid-point distance classifier (left)
gave the best results. The MCP (middle) and NCP (right) classifiers gave roughly similar results.

(a) 10 sulcal classes (b) 12 sulcal classes

Figure 7: Labeling 10 vs 12 classes: The results for the spatial distance deteriorated when the two
precentral sulci were added, increasing the number of classes to 12. The precentral sulcus was
sometimes miscategorized as the adjacent sylvian fissure, the central or superior frontal sulcus.
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(i)displaced sulcus misidentified (j) deep tumor, sulcus unaffected

Figure 9: Labeling sulci displaced by tumors for 6 subjects. The affected sulci are shown on the
left; the labeling results, on the right and bottom. The labeling error rate in the unaffected cortical
regions is the same as for the healthy subjects. In the affected regions, the sulci are correctly labeled
(shaded mauve) or do not exist (shaded grey) in 5/6 cases. It is misidentified in only one case, (i)
(shaded yellow).
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