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ABSTRACT OF THE THESIS

A Twin Study using Automated Brain
Shape Segmentation Algorithms

by

Meenakshi Mani
Master of Science in Statistics
University of California, Los Angeles, 2007
Professor Paul M. Thompson, Co-chair

Professor Jan de Leeuw, Co-chair

In this pilot study, we validated a set of automated surface segmentation shape
extraction algorithms to study genetic influences on the brain structure of normal
twins. A set of manually delineated lateral ventricles was deformed, using a
3D Navier-Stokes fluid image registration algorithm, onto all the scans in the
database of twin brain MRI images. The geometric transformations thus obtained
were used to propagate the segmentation labels to all the other brain images.
3D radial distance maps were derived to encode anatomical shape differences.
The proportion of shape variance attributable to genetic factors, known as the
heritability, was estimated from the shape models using a restricted maximum
likelihood formula to increase statistical power. Segmentation errors associated
with the projection of labels onto new images were greatly reduced through multi-
atlas averaging. The resulting algorithms provide a convenient and sensitive tool

to recover and analyze small intra-pair image differences.

In summary, here we show how computer vision approaches based on fluidly



deformable parametric surfaces can be applied to automatically delineate and
parameterize brain structures in an image database, and detect genetic influences

on brain shape.
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CHAPTER 1

Introduction

1.1 Overview

The application of shape analysis to the morphological study of brain struc-
ture has garnered much recent interest. Many scientific studies [TCNO1, PFLOO,
LCBO06] have reported on overall brain volume inheritance (see Peper et al. [PBB07]
for a review). Volume heritability, however, is a non-specific marker. To gain a
more complete understanding of the role genetics plays in shaping brain mor-
phology, it would be helpful to identify specific structures and pinpoint locations
within them that contain genetic signals. Once identified, the structural features
that are most strongly influenced by genes, can in turn, serve as markers for a
disease trait, for instance, or to screen and test for effects of specific candidate
genes (polymorphic alleles) that are thought to influence brain morphology (such
as apolipoprotein E4 [PDQ95], and brain-derived neurotrophic factor (BDNF)).

Shape characterization can detect group differences or changes over time, as
well as disease and genetic effects on brain structure. The selection of appropriate
shape representations such as Procrustes analysis of a set of 3D anatomical land-
marks [Goo91], or medial axis representations [SGO1], can be used to quantify
shape variation in anatomical structures. A recent twin study [GSS01, SLMO5]
examined the genetic effects of neurodegenerative disease on lateral ventricles us-

ing two surface-based shape measures, one derived from a medial representation



and the other involving spherical harmonics. Medial representations describe the
boundary of a closed shape in terms of the distance and angle of boundary points
relative to a medial curve or surface threading through the center of the structure,
while spherical harmonics provide a complete orthonormal series expansion for
closed shapes, and can be used in conjunction with statistical dimension reduction
techniques such as principal component analysis to find principal modes of vari-
ation. Their findings suggest that shape statistics can uncover group differences

that volume measurements are unable to detect.

The lateral ventricles make for an interesting study in shape analysis. These
central cavities that serve as conduits for cerebrospinal fluid (CSF) in the brain
(see Figure 1.1), exhibit dysmorphic enlargement in a range of neurodevelop-
mental and neurodegenerative diseases such as Alzheimer’s disease, schizophre-
nia [RRC82] and bipolar illness. Ventricular size and shape are altered as these
diseases progress [MSLO1]. It is well known that these diseases also have a
strong genetic component. Those at heightened genetic risk for schizophrenia
(e.g., a patients unaffected twin or sibling) have enlarged ventricles compared to
healthy controls [BOH01, SLMO05], as do those at genetic risk for Alzheimer’s dis-
ease [CLZ07a] compared to elderly controls. There is great interest in identifying
the anatomical selectivity of these gene effects and, once identified, the specific

genes that cause them [CHE05, CTE06].

In this thesis, we use statistical shape analysis to look at the genetic influences
on the lateral ventricular structure. Our shape parameter is a radial measure,
the perpendicular distance from the medial core to the 3D mesh that constitutes
the surface. Using a classical twin design framework, we seek to establish a
genetic continuum by looking at degrees of relatedness in various pairings as

measured by the intra-class correlation (ICC). To assess heritability, we pool



Figure 1.1: Shape models of the Lateral Ventricles in a Brain MRI Scan.
A set of 3D parametric mesh surfaces is used to represent the lateral ventricles,
a fluid-filled structure in the brain. A coronal section from the corresponding
3D MRI scan, and a model of the brain surface (white mesh) are also shown for
context. The anterior horns of the ventricles are shown in blue (top surface) and
green (bottom surface), and the posterior horns are shown in red (top surface)
and yellow (bottom surface).

the data from both monozygotic (identical) and dizygotic (fraternal) twins and
solve a restricted maximum likelihood (REML) expression using Fisher’s scoring
routine. This restricts the number of parameters being estimated, thereby giving
us more statistical power for the small sample size (16 pairs). It also enables us

to obtain non-negative heritability estimates.

We combine this study with a new automated segmentation procedure de-
veloped by Chou et al. [CLZ07a]. There is a compelling reason to adopt au-
tomated techniques as the expertise and time required for manual delineation
make large-scale clinical studies impractical. We compute a surface model of the
ventricular surface based on the medial axis representation, in order to assess
shape differences between groups of subjects. The brain images are first put into
spatial correspondence using linear affine transformations and then fluidly regis-

tered [CRM96] to an individual DZ brain on which the ventricles were manually



segmented. The manual label is propagated to each of the brain images using
the displacement fields from the registration step. A multi-atlas averaging tech-
nique significantly reduces the random error introduced through automatic label
propagation. Since inter-class group studies are sensitive to error and intra-pair
studies even more so, minimizing these errors is important in group studies of

this nature.

The interaction between genes and environment and their effects on brain
structure are still largely unknown as their detection requires automated shape or
volume analysis, and computational methods to detect gene effects on structures
extracted from populations of 3D images. Ours is one of the first studies to
combine genetic modeling with computer vision based algorithms to create a
robust automated system that only requires human involvement at the initial

stages.

1.2 Thesis Outline

This thesis is organized as follows:

e Chapter 2 is a comprehensive description of the steps required to pre-process
the MRI data for genetic analysis. It starts with a brief description of the
image acquisition methods followed by rigid and nonrigid registration. The
full details of the registration methods used can be found in the Appendix A.
Next, automatated surface segmentation is described including the new
multiple image registration method, used to improve the accuracy. Finally,
the computation of the shape parameter is discussed. The relative merits

of all these methods is also briefly discussed.

e Chapter 3 discusses the notion of heritability in quantitative genetics in the



context of the classical twin design. Quantitative measures or statistics of
interest such as intraclass correlation (ICC) and heritability, are explained

next.

e In Chapter 4 we present the results of the statistical analysis, starting with

the raw data, followed by the ICC values and finally the heritability results.

e We conclude with a discussion of the relevance of this work and the direc-

tions for future work.



CHAPTER 2

Automated Segmentation of Ventricles and

Extraction of the Shape Parameter

2.1 Overview

Computational anatomic studies of large brain MRI databases have led to sig-
nificant neuroscientific discoveries regarding brain changes throughout life and
in disease. Even so, the effects of genetics and environment on brain structure
are still largely unknown as their detection requires large image databases, auto-
mated shape or volumetric analysis, and computational methods to detect gene

effects on structures.

Here we combine several powerful computer vision algorithms with genetic
modeling techniques to detect subtle and localized effects of genetic factors on
brain structure. In this chapter, we discuss these computer vision approaches,

which, collectively describe a surface segmentation shape extraction scheme.

2.1.1 Segmentation

Segmentation is an important image processing step that, in the brain imag-
ing context, separates out cortical structures and regions of interest in a brain
image. The segmented brain provides an anatomical framework for functional

visualization for applications such as neurosurgical planning and in neuroscience



research. Brain segmentation also serves as a preliminary step for registration,
warping, voxel-based morphometry [AF00], and quantitative study. In this work,
it is necessary to segment the ventricles to collect shape defining parameters for

statistical evaluation.

2.1.2 Automated Segmentation

Automated segmentation and labeling of 3D brain images is a challenging prob-
lem. Many structures are complex and variable in shape, making accurate and
reproducible segmentation difficult. At the same time, automated approaches
are needed for a vast range of medical applications. Many population-based
studies of Alzheimer’s disease, multiple sclerosis, and schizophrenia [TBH07]| now
use sequential imaging to examine brain changes over time in hundreds or even
thousands of subjects, making automated analysis essential. There is also sci-
entific and commercial interest in identifying treatments, genes, environmental
or demographic factors that influence brain integrity, as quantified by computa-
tional measures. This discovery is being held back by the lack of algorithms to

automatically identify and compare models of brain anatomy on a large scale.

2.1.3 Literature Overview

Many algorithms have been proposed to partially automate brain structure ex-
tractions. These still require some amount of expert knowledge and user input
such as selecting several points by hand on the structure boundary to initial-
ize a deformable template close to the structure, prior to high-dimensional fluid
registration. Hogan et al. [HMWO00] used a fluid registration model to deform
a template hippocampal surface model into new subjects’ scans, yielding a set

of models that were analyzed for group differences in shape in Alzheimer’s dis-



ease (AD) [ACDO03] and shape asymmetries [WGHO05]. Level-set or active surface
methods, which use partial differential equations to evolve a deforming template
under image-derived forces, often require some interactive initialization for accu-

rate label propagation [YPHOG6.

Some groups have attempted fully automated subcortical segmentation, such
as [CMHO7] and [FSB02], who used a Markov Random Field model to encode
statistical prior information on the expected intensities and adjacencies of struc-
tures. Zhou et al. [ZR05] used fuzzy templates to automatically segment different
brain structures based on information extracted from a set of training images.
Artificial neural networks were used by Ferrarini et al. [FPOO06] to study ventric-
ular shape variations in healthy elderly and AD subjects, generating a control
average surface and a cloud of corresponding nodes across a data set. Hecke-
mann et al. [HHA06] performed label propagation using free-form deformations

and decision fusion to provide automated anatomical segmentations of the brain.

Multi-atlas methods have also been proposed to address the problems of error
introduced through the automation process. These are described in [DHT99,
FSB02, HHA06, SMHO5].

2.1.4 Our Approach

In this study, we fit a surface model of the ventricles based on the medial axis
representation, and use it to assess shape differences in a population of subjects.
The brain images are first registered through global affine transformations and
then fluidly registered [CRM96] to an individual subject’s brain on which the
ventricles have been manually segmented. This manual label is propagated to
each of the brain images using the displacement fields from the registration step.

The procedure is performed on a set of three reference brains, whose labelings



are then combined by averaging. Finally, the radial distance to the medial axis

is computed. The details of this procedure can be found in [CLZ07a, CLZ07b].

The multi-atlas averaging technique dramatically reduces random error in-
troduced through automatic label propagation from a single reference image.
Furthermore, this approach eliminates the problem of disconnected voxels that
are commonly found in other bottom-up segmentation methods that indepen-
dently classify each individual voxel as belonging to the structure or not, based

on a feature set.

The steps, from the acquisition of the MRI data to the extraction of the

quantitative shape parameter (see Figure 2.1) are described below.

2.2 Image Acquisition

Magnetic Resonance(MR) is the brain imaging technology of choice for neuro-
scientific studies because it allows one to tailor the image to the anatomic part
of interest and to the disease process being studied. The desired imaging effects
can be acheived by adjusting a set of intrinsic parameters. Adjusting the T1 and
T2 spin relaxation times, for instance, allows one to acheive the right contrast
to highlight a feature. A good reference that covers MRI principles in detail
is [LL99]. Because MRI data is stored as a 3D digital image, it can pre-processed

and analyzed using image processing methods.

2.3 Rigid Registration

The first of these pre-processing steps is rigid registration. In order to segment

anatomical brain structures using the multi-atlas method, the brain images first



Image acquisition
using MRI scanner

Rigid registration
to ICBM standard space

!

Ventricular delineation of
multiple reference atlases

|
A4

Fluid registration Propagation of labels to all other Int ti ltiole label
(performed for each reference atlas) brain images in the database niegrating muttiple fabels

!

Ventricular surface parametrization
and medial axis-based shape
parameter extraction

Figure 2.1: Data Pre-processing Path

need to be put into spatial correspondence. We use global linear transformations
(translations, rotations and scalings) to spatially normalize the images as a first

step to exact alignment.

2.4 Expert Ventricular Delineation

A set of brain scans are randomly selected from the twin brain MRI database
and the lateral ventricles are manually traced in consecutive coronal slices. For
this study, we used three atlases as references. The accurate identification of

neuroanatomic boundaries was facilitated by the MultiTracer [Woo03] application

10



software.

2.5 Fluid Registration

The fluid registration approach we follow, first described by Christensen [CRM96],
treats the deforming image as a compressible viscous fluid whose motion is gov-

erned by the nonlinear Navier-Stokes partial differential equation (PDE)

uV2v + (u+ A)V(V - v) + b(x,u) = 0. (2.1)

For constant force, this expression is linear and is a key step in the numerical
solution of the PDE. A 3D convolution filter in a multiresolution grid [BG96,
GB97] serves as a linear operator and is used to solve this equation. The force that
drives the deformation is derived from a similarity based cost function. In this
case, an intensity matching function was used because ventricular CSF has high

contrast. Registration procedures are described in greater detail in Appendix A.

Our approach addresses some of the challenges presented by the automatic
segmentation of lateral ventricles and similar anatomical structures. First, the
fluid model ensures the deformation mappings are diffeomorphic, i.e., formally
guaranteed to remain one-to-one to match homologous anatomical points. Sec-
ond, deformable templates can fit a model through what can be partially discon-
nected sets of CSF voxels in the regions where the lateral ventricles are thin or

indeterminate.
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2.6 Propagation of Contours using a Single Atlas

The geometric transformations that map the source to the target during non-
linear registration are diffeomorphic, i.e., smooth one-to-one mappings. We can
therefore perform an inverse transform to map landmarks on the target to ho-
mologous points on the source. Using trilinear interpolation, a 3D contour of
the shape is constructed, which when propagated to the unlabelled images in the
database, results in the automatic segmentation of the lateral ventricle or other

anatomical brain structure.

2.7 Multi-Atlas Alignment

There are errors inherent in an automatic labelling procedure. Systematic errors
may arise due to a bias in the registration process or in the expert labelling while
random errors occur from fine tuning the individual registrations. As a result,
label propagation is dependant on the choice of the target image with different

targets resulting in different segmentations.

To improve label propagation accuracy, we manually delineate and label 3
targets. Each of these targets is used to independently segment the brain images
in the database resulting in each image being assigned three sets of labels. These

labels are then fused into one through linear averaging.

Chou et al. [CLZ07a, CLZ07b] have shown that increasing the number of la-
beled atlases, IV, resulted in an asymptotic decrease in the average error between
manually and automatically extracted models. In their case, the labeling error,
measured using the symmetrized Hausdorff distance (see Appendix C), was aver-
aged over 16 lateral ventricles and plotted after each of 9 targets was added. They

found that only 3-4 reference atlases were needed to realize the full potential of

12



this averaging method. It is thought that this averaging procedure significantly
reduces the effects of random digitization errors from the manual segmentations.
The resulting average model is somewhat robust to inaccuracies in individual
registrations, which may occur when non-global minima of the intensity-based

cost function are reached.

The combination of segmentations is not a new idea, but, it has not been
previously applied and validated for surface-based segmentations. This method
does not require any operator input other than the initial expert labeling of a

small set of images.

2.8 Ventricular Shape Metrics

In order to use statistical shape analysis to identify regional differences in ven-
tricular morphology, we first extract the shape parameter from the shape model.
This is a surface-based shape measure which combines surface mesh model-
ing [THZ04, TSL96, TST96] with medial axis shape representation. Points rep-
resenting the contours of the lateral ventricles previously segmented as described
above, are resampled so that a regular parametric grid is mapped onto the sur-
face. The medial axis, which curves through the cross-sectional centroids of the
3D shape to form the backbone, is the reference from which the (perpendicular)
distance to the grid points at the surface is measured (see Figure 2.3). These
radial distances, evaluated at each of the mesh nodes, allow statistical compar-
isons of local surface contractions and expansions at homologous surface locations
across subjects to be made. Local shape differences between groups or within a

group can thus be assessed.

For this study, we evaluated the left lateral ventricle, tracing out the ante-

13



rior and posterior horn. Data from the inferior horn was not used because it is
not a consistent feature in young healthy subjects. To further increase resolu-
tion, we divided these two horns into 2 sections, top and bottom. Sets of points
representing the tissue boundaries from each region were resampled and made
spatially uniform by stretching a regular parametric grid (100 x 150 = 15, 000 sur-
face points) over each surface. The number of left ventricular locations sampled
(15,000 x 4 = 60,000 points) gives us a sensitive tool to detect shape differences

between the groups.

14
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Ventricular Structure Analysis

Occipital Temporal
1. Delineate the frontal,occipital,
and temporal horns of the
ventricle in coronal sections

2. Establish a medial curve for
each region

3. Calculate the radial distance
from the medial axis to the
grid points at the surface

Figure 2.3: A flow chart to show how ventricular distance maps are computed.
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CHAPTER 3

Concepts from Quantitative (GGenetics

A phenotype is a specific biological trait such as eye color, that can be measured
in a population; such a trait is typically influenced by genes and the environment.
Heritability is the proportion of phenotypic variance attributable to genetic vari-
ance. It ranges in value from 0.0 (where genes do not contribute at all to individ-
ual phenotypic differences) to 1.0 (individual differences are entirely attributable
to genetic differences). Heritability also depends on the range of typical environ-
ments in the population studied. If the environment of the population is fairly
uniform, as in the case of twins reared together, heritability can be estimated
from phenotypic measures in identical and fraternal twins, as each type of twin

differs in genetic similarity.

3.1 Classical Twin Design

The twin design provides a mechanism to study the relative contribution of genes
to phenotypic variability. Monozygotic (MZ) twins are genetically identical, while
fraternal or dizygotic (DZ) twins share, on average, 50% of their genes. By
extending comparisons to pairs with varying degrees of kinship, we design a

genetic continuum from which to assess heritability of brain substructure.

17



3.2 Intraclass Correlation Calculation

The standard approach to measure the degree of relationship for twin or other
unordered data pairs is to use the intraclass correlation (ICC). The analysis of

variance (ANOVA) formulation (cf. Appendix D),

. MSbetween - MSwithin
MSbetween + MSwithin

r (3.1)

treats each pair as a random effect and the data from the members of each
pair are viewed as measurement errors; this model is widely used in twin study

calculations.

Due to the variability inherent in estimates derived from a small sample, the
computed ICC values may be negative. We can correct this to get non-negative
ICC values, usually by increasing the sample size. This can be explained by
the fact that the M Sperween and the M S, ;nin are estimates of the population
variance o2, but the M Spetupeen is calculated from sample means and the M .S,ihin
is calculated from sample variances. Adding more twin pairs to the study will
not affect the within-pair variance, but it will affect the distribution of the means
if there are differences between twin pairs. The net affect is for the estimated

ICC to become positive as additional twin pairs are included.

For this study, we use the restricted maximum likelihood (REML) method,
which gives an unbiased ICC estimate [Lee07]. The non-negative REML formula

is given by

n

] MSbetween - MSwithm
r=max |0, (3.2)
MSbetween + MSwithin

n—1

where n is the number of twin pairs.

18



3.3 Heritability Calculation

The simplest expression for heritability is

h? = (3.3)

r
rek
where G is the degree of genetic similarity (assumed to be 0.5 for DZ and 1.0
for MZ twins) and r is the ICC. From this, we can obtain independent esti-
mates of heritability from either group of twins. Heritability may also be esti-
mated by combining information from both sets of twins using Falconer’s formu-

lation [Fal81]
h2 = 2<TMZ - TDZ)‘ (34)

Since the number of pairs is small, we specify a more restrictive likelihood
model with a smaller number of parameters. We do this by pooling the MZ and
DZ data. We assume that both groups are distributed with the same mean, y, and
variance, o2, and that they differ only by their covariances, w?,, and w?,. The
negative log-likelihood L(u,0? w3,,, w?,) must be minimized over o2 > w?,, >
w? , using an iterative algorithm. This ensures that the heritability estimates are
non-negative. We compute initial values from method of moments estimates and

use Fisher’s scoring algorithm given by:
Oy =0, +1(0)'V(O) (3.5)

where i is the iteration step size, I is the Fisher information and V(©) is the
score function. This is an alternative to the Newton-Raphson method where the

Hessian is replaced by the expected value of the Hessian.
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CHAPTER 4

Statistical Shape Analysis

In this chapter, the statistical analysis of the left lateral ventricular data of
healthy twins is discussed. The statistical evaluation is divided into three parts:

analysis of raw data, analysis of ICC, heritability results.

4.1 Subjects

3D anatomical brain imaging data was acquired from 32 subjects, 10 MZ (6
males, 4 females) and 6 same-sex DZ (4 males, 2 female) twin pairs, as part of a
5-year research study of 700 pairs of twins. Informed consent was obtained from
all participants and the study was approved by the institutional review boards
at UCLA and the University of Queensland. The subjects ranged in age from
22-25 years and all were healthy. Zygosity was established objectively by typing
nine independent DNA microsatellite polymorphisms (PIC > 0.7) by using stan-
dard polymerase chain reaction (PCR) methods and genotyping. These results
were crossed checked with blood group (ABO, MNS, and Rh), and phenotypic
data (hair, skin and eye color), giving an overall probability of correct zygosity

assignment of greater than 99.99%.
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4.2 MRI Image Acquisition and Pre-processing

3D T1-weighted images were acquired from all subjects on a 4 Tesla Bruker
Medspec whole body scanner, located at the CMR and Wesley Hospital MRI
Research Facility in Queensland, Australia. Subjects were scanned using a cus-
tomized MP-RAGE 3D T1-weighted sequence to resolve anatomy at high reso-
lution (0.9 mm isotropic resolution); TR=2500 ms; TE=3.83 ms; T1=1500 ms;
pulse angle=15; coronal orientation; FOV 230 x 230 x 230 mm? ; the acquisition
matrix was 256 x 256 x 256. All the images were spatially normalized to the
International Consortium for Brain Mapping (ICBM-53) average brain imaging
template [CNP94] using 9 parameter registration (i.e., 3 rotations, 3 translations,

3 scalings).

4.3 Data

The raw data is a set of radial measures from each of the 4 sections of the left
lateral ventricle: top anterior, bottom anterior, top posterior, bottom posterior.
The radial distance is the length from the medial core to a grid point on the 3D
surface. An intraclass correlation (ICC) statistic and heritability coefficient was
computed at each of the 15,000 surface grid points. A total of 15,000x4 = 60, 000

lateral ventricular locations were sampled.

4.4 Exploratory Analysis of Raw Data

We first plotted histograms (see Figure 4.1) of the radial measures. These dis-
tributions reflect the shape of the structure. The right skewed distributions we

see indicate the presence of small peripheral regions. This also demonstrates the
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ability of a deformable template based segmentation technique to included and

connect the peripheral regions.

Summary statistics for each section and for the ventricle as a whole are shown
in Tables 4.2 and 4.3. The mean and median values for MZ twins are less than the
corresponding values for DZ twins. This is most obvious in the anterior regions.
The null hypothesis that the two groups of twins come from the same distribution
was tested using two non-parametric tests, the Kolmogorov-Smirnov test and the
Wilcoxon rank sum test. The differences were found to be significant (p-value
< 0.00001). Although our findings are contrary to the assumptions of the twin
design that the distributions have the same mean, it has been suggested that MZ
twins are in fact smaller on many anthropological characters and that this may
have to do with shared chorion or placenta [DDS82]. It should be pointed out
that some of the other published studies looking at ventricular volume between

twins found no significant differences [].

The effects of multi-atlas labeling are evident when Tables 4.2 and 4.3 are
compared. Table 4.3 gives a summary of data that resulted from the averaging
3 reference templates. Since the averaging results in higher means and the dis-
tribution shift is significant (p-value < 0.00001), it suggests that the ventricle
delineated through averaging is larger than one where a single ventricle reference

is used.

4.5 Intraclass correlations

ICC values computed at 60,000 mesh points of the ventricular surface were used
to construct ICC maps for MZ and DZ twins (see Figure 4.2). These ICC values

are also summarized (mean and standard deviation) in Table 4.4. The intra-
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class correlation coefficients were numerically greater in identical twins than in
randomly selected non-related pairs of subjects, for all of the measures chosen.
Although quantitative testing of the differences in correlations for identical ver-
sus fraternal twins would require a large sample to confirm, this pilot sample
shows that ICCs are numerically greater for twins with greater genetic affinity.
Evidence for a genetic continuum alone, in which similarity is greatest for MZ
twins, somewhat less for DZ twins, and negligibly small for randomly selected
unrelated subjects, does not mean genetic influences are dominant. MZ twins

should also have correlations that are at least twice that of DZ twins.

The effects of multi-atlas segmentation and labeling of the images is also
evident from Table 4.4. When 3 ventricular templates are propagated into each
brain scan and averaged, the net effect, relative to using a single template, is
to reduce a source of methodological error, namely the error associated with
labeling of the ventricles. Because this source of labeling error is diminished,
Table 4.5 shows that in general all the ICC coefficients increase for every measure
chosen, and for each type of twin. This is reasonable, as the sources of labeling
error include hand digitization errors in the templates, as well as minor errors
in boundary correspondence due to imperfect fluid image registration. Because
the magnitude of these errors is not likely to be correlated between members of a

twin pair (or an unrelated pair), their removal results in all the ICCs increasing.

4.6 Heritability

Heritability values were computed using a REML scoring algorithm and are plot-
ted in Figure 4.5. The values range from 0.0 (since we constrained the values to
be non-negative) to 1.2 (due to the variance in a small sample, we can expect

values to be greater than 1.0). The mean values, tabulated in Table 4.1 range
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1 Atlas 3 Atlases
Mean SD | Mean SD

Top Anterior | 0.17 0.28 | 0.11 0.22
Bot Anterior 0.15 0.32| 0.08 0.19
Top Posterior | 0.16 0.22 | 0.10 0.17
Bot Posterior | 0.19 0.26 | 0.07 0.14

Table 4.1: Heritability summary for 1 and 3 Atlases: h?*(1 Atlas) > h?(3 Atlas
averaging).

from 0.15 to 0.19 for the 4 sections indicating that environmental variance is the
dominant influence. These values are lower than LV volume heritability reported
in previous studies. From Figure 4.5 and Table 4.1, we can also see that multi-
atlas averaging had a marked effect on the heritability, consistently lowering the
estimate for all four venticular sections. The ICC trends seen in Figure 4.4 may
explain this. With multi-atlas averaging, both ICC);; and ICCpy increase, but
ICCpyz increases by a greater percentage. The heritability, which is computed

from their difference, can therefore be expected to decrease.

4.6.1 Heritability Distribution

A non-parametric distribution of heritability values gives us the uncorrected p-
values. Figure 4.7 shows the uncorrected and corrected p-values for the Top
Anterior section. (The plots for the other 3 sections are similar). From the p-
map we see that there is no genetic signal. A distribution for the heritability was
computed which allows for minimal distributional assumptions. The heritabil-
ity values are not significant and corrections for multiple comparisons (FDR or

FWER) were not necessary.
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MZ(n=10) DZ(n=6)
Mean SD | Mean SD
Top Anterior | 4.959 2.255 | 5.266 2.275
Bot Anterior | 4.939 2.112 | 5.298 2.150
Anterior 4.949 2.185 | 5.282 2.213
Top Posterior | 5.446 2.905 | 5.469 2.821
Bot Posterior | 5.299 2.717 | 5.227 2.688
Posterior 5.373 2.814 | 5.348 2.758
Total 5.161 2.528 | 5.315 2.501

Table 4.2: Radial distance(mm) measured using 1 atlas.

MZ(n=10) DZ(n=6)
Mean SD | Mean SD
Top Anterior | 5.330 2.200 | 5.710 2.244
Bot Anterior | 5.729 2.097 | 6.188 2.132
Anterior 5.529 2.159 | 5.949 2.202
Top Posterior | 5.401 3.106 | 5.399 3.003
Bot Posterior | 5.296 2.903 | 5.241 2.845
Posterior 5.349 3.007 | 5.320 2.926
Total 5.439 2.619 | 5.634 2.608

Table 4.3: Radial distance(mm) measured using 3 atlases.
4.6.2 Discussion

The cumulative evidence from these tests, the low heritability values, the fact
that these scores are lowered further when the source of methodological error
is reduced and the high pvalues obtained, suggest that the shape variation in
lateral ventricles is largely influenced by environmental factors. The ICCpy,
in particular after atlas averaging, is more than half the MZ correlation (see

Figure 4.4), suggesting the influence of shared environmental factors.
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MZ (n =10) | DZ (n =6) | NR (n = 10)
Mean SD | Mean SD | Mean SD
Top Anterior | 0.35 0.20 | 0.23 0.26 | 0.11 0.15
Bot Anterior 0.38 0.21 | 0.20 0.22| 0.07 0.11
Top Posterior | 0.42 0.22 | 0.25 0.22| 0.03 0.11
Bot Posterior | 0.46 0.23 | 0.21 0.21| 0.05 0.10

Table 4.4: ICC using 1 Atlas: ICCy;z > ICCpz > ICCypg.

MZ(n=10) | DZ(n=6) | NR(n=10)
Mean SD | Mean SD | Mean SD
Top Anterior | 0.37 0.22 | 027 0.26| 0.15 0.18
Bot Anterior | 0.39 024 | 026 0.23| 0.10 0.13
Top Posterior | 0.51 0.19 | 0.32 0.28 | 0.02 0.04
Bot Posterior | 0.58 0.20 | 0.30 0.26 | 0.05 0.10

Table 4.5: ICC using 3 Atlases: ICCyz > ICCpy > ICCyp.
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MZ radial distance: 1 target
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Figure 4.1: Histograms of radial distance for MZ and DZ twins. Top: registered
using 1 atlas; Bottom: registered using 3 atlases.
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Figure 4.2: Intraclass correlation maps. Genetically similar MZ twins (left) have
greater intra-pair similarity than do DZ twins (right). These similarities increase
as the number of reference atlases increase (bottom left, MZ; bottom right, DZ),
suggesting that a source of error has been reduced. The increase in ICC values
is indicated by the increased presence of red (r > 0.5).
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Figure 4.3: Boxplots comparing ICC values for MZ, DZ and NR pairs for
1 atlas(top) and 3 atlases (bottom). For the Top Anterior, Bottom Ante-
rior, Top Posterior and Bottom Posterior locations of the lateral ventricle,
1CCyz > ICCpz; > ICCyg. The null hypothesis that there is no significant
difference between the means for any given pairing was rejected in all cases.
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Figure 4.4: ICC values for 1 and 3 atlas averaging for MZ (top); DZ (center);
NR (bottom); Here we compare the ICCs for measures derived from anatomical
segmentations that use a single deformable surface template, versus the gen-
erally more accurate segmentations derived from averaging the results of three
deformable surface segmentations. The higher ICCs obtainable with more tem-
plates suggest that the anatomical labeling error has been reduced and would
otherwise be a major source of methodological error, depleting power to assess
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Figure 4.5: Heritability is low and decreases further after 3 target averaging.
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Figure 4.6: Heritability p-value map. The p-values, computed by generating a
non-parametric distribution, were not significant as evidenced by the large blue
areas on the map. (p > 0.05).
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Figure 4.7: Heritability p-values: The histogram for heritabililty (top left) shows
most values are between 0 and 0.1. A histogram for the p-values obtained from a
non-parametric distribtion and not corrected for multiple comparisons, show most
are not significant (top right). No signal was obtained after FDR and FWER
corrections were applied to the p-values (bottom left and right).
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CHAPTER 5

Discussion

In this study, we combined algorithms for automated brain image segmentation,
fluid image registration, surface parameterization, shape statistics and quantita-
tive genetics in a novel way to automatically assess how genes influence brain
structure in a medical image database. We performed fluid segmentation of
the lateral ventricles using a 3D Navier-Stokes registration model in an MRI
database of twins, modeling surface shape variation using surface-based statistics
derived from a medial axis transform. The segmentation approach is novel as
it uses multi-template averaging and a hybrid surface- and volume-based high-
dimensional image registration to improve accuracy. In initial studies, some other
groups [GSS01, SLMO05] have proposed approaches for modeling genetic influences
on brain shape and volume in twins. Here we use a stable and robust restricted
maximum likelihood method to compute genetic effects on brain structure, as well
as proportions of variance attributable to genes, including tests of reliability (via
the use of different anatomic templates for labeling) and estimates of heritability

computed in an expanding MRI database.

Even in this pilot study, which is intended to provide a proof of concept for
the approach, this benefit of multi-atlas versus single-atlas image segmentation is
substantial, with ICCs for identical twins rising from 0.4 to 0.5 in some cases with
the addition of multiple segmentation templates (or atlases; see Tables 1 and 2).

This increased genetic signal-to-noise ratio may be of substantial value if these
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image-derived measures are to serve as a quantitative endophenotype to search
for the effects of individual candidate genes on brain structure, as the database

is expanded.
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APPENDIX A

Image Registration

In order to perform a statistical evaluation of inter-subject anatomical brain
differences, the brain images first need to be put into spatial correspondence.
The images are typically aligned to a given reference such that each anatomical
point or landmark in the image is matched to a homologous point in the reference.
This process of aligning two images by mathematically deforming one to coincide
with the other using a best-fit similarity criteria is called image registration.
Registration approaches can be classified as rigid or nonrigid. They differ based

on the image acquisition methods used and the kind of study to be performed.

A.1 Rigid Registration

Rigid registration is characterized by simple rotations and translations. These
transformations are global in nature and preserve internal distances and angles.
Rigid registration is commonly applied in situations where there is little change
in brain shape or position within the skull. It is thus suitable for cases where
the image data for a single subject is acquired over a short period of time often
with different imaging modalities such as CT, MRI or PET. Affine registration,
an extension of rigid registration which includes shears and scale adjustments,
expands the scope of applications. Since it can be described compactly requiring

just somewhere between 6 to 12 parameters (i.e. upto 3 rotations, 3 translations,
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3 shears, 3 scalings) it is typically used as a first approximation to full nonrigid

registration (see Figure A.1) or for the interpolation of missing features.

A.2 Nonrigid Registration

Affine mappings can only approximate the complex transformations required to
put two brain images into correspondence. To completely transform a source
image to the target image we need to apply nonlinear deformations locally to
correct for the discrepancies (see Figure A.1). These spatial deformations are
driven by external forces which minimize image differences as quantified by sim-
ilarity measures. The image itself is treated as a physical entity—an elastic solid
or a viscous fluid-to which a force is applied. The physical motivation underly-
ing the nonrigid matching problem is reflected in the mathematics which is an

amalgam of elastic theory and fluid dynamics.

o Jo Jlo_

Source image Rotation Scaling Target image

Figure A.1: Transforming the source to the target through rigid, affine and non-
rigid deformation.
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A.2.1 The Variational Framework

The conceptual basis for nonrigid registration is the optimization of the objective
function [GB99]

cost = deformation — similarity.

The similarity is some measure of the difference in image intensities between the
two templates. The deformation term, introduced to account for noise in the
image or in cases where the image data is missing, is a penalty that is imposed
to ensure smoothness. The similarity term, from which the deformation forces
are derived, can be thought of as a potential function. Extending the mechanical
analogy, the cost function can be likened to an expression of Hooke’s law with

the similarity being the stress and the deformation being the strain.

The similarity measure can be optimized by minimizing [ || Zsource — ltarget||* In
a least squares fit. Energy is the integral of the potential so in keeping with the
physical analogy, this integral is the potential energy. The deformation offsets the
similarity term till equilibrium is reached and the total potential energy of the
system, the cost function, is minimized. Because the image matching problem is
described in variational terms, powerful numerical techniques exist to solve the

equations.

A.2.2 The Elastic Model

Broit and Bajcsy [Bro81, BB82], were the first to model the source image as an
incompressible elastic solid that deforms to match a canonical reference known as
an atlas. To drive the elastic-matching process, they introduced this variational
physics-based formulation for 3D registration of the brain. Bajcsy and Kovacic

[BK89] subsequently implemented a more efficient procedure that guides the reg-
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istration in a nested fashion from coarse to fine resolution. Corrections made at
the coarser stages are propagated so that smaller adjustments are required at the
finer resolutions. This multiresolution scheme lowers the computational costs.
The success of the 3D elastically deformable model has since spawned a body
of literature — some of these efforts have reformulated the problem in decision
theoretic terms using Bayesian modeling [Gee99, GB99]. Of particular relevance
to the development of the viscous model (cf. Section A.0.3.3) is the work of Amit,
Grenander et al. [AGP91] and Miller, Christensen et al [MCA93] who derive the
driving force based on a Gaussian sensor likelihood in place of the correlation

based similarity measure employed by Bajcsy.

Limitations of Elastic Registration Elastic registration is not a general
purpose application. Its use is restricted to small deformations where the in-
ternal strains generated do not exceed the elastic bounds. Moreover, the use of
a quadratic penalty function limits the size of the deformation. This prevents

complete registration when the deformations are large.

A.2.3 The Fluid Model

To accomodate the large and complex deformations involved in inter-subject brain
registration, Christensen [CRM96] proposed a viscous fluid model based on the
theory of fluid dynamics. Here the source template, 7', is modeled as a viscous
fluid that flows out to match the reference, R. A local force is applied to the
template in a direction that gives the best fit to a second image. This deforming

force is thus defined by the characteristics of the target image.
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Eulerian Frame of Reference In fluid registration, position is referenced in
Eulerian coordinates as opposed to the Lagrangian coordinates used in elastic
registration. An Eulerian reference frame is fixed in space and does not track of
the movement of individual particles. Rather, location is described in terms of the
final position: a particle at position x at time ¢ in the template image, originated
at position x — u(x,t) at time 5. Here u(x,t) is the displacement of the particle
as it moves through x. This method of accounting is more efficient than the
Lagrangian approach where a particle is parameterized with the initial position
as a reference. When a material deforms, the Lagrangian grid deforms with it
and can sometimes overlap and contort. The use of Lagrangian coordinates is
thus only suitable for the small cohesive deformations characteristic of elastic
registration. The Eulerian reference, in contrast, allows for the relaxation of
internal stresses that build up in response to the deformation. Large deformations

are thus possible.

In the Eulerian frame, the velocity field is defined as

ou(x,t)

v(x,t) = Vu(x, t)v(x,t) + 5

. (A1)

This is obtained by the application of the chain rule of differentiation (cf. Ap-
pendix B).

Navier Stokes PDE This framework allows the motion of the fluid to be

described in terms of the Navier-Stokes partial differential equation (PDE)

uV*v + (p+ A)V(V - v) + b(x,u) = 0. (A.2)

40



The Laplacian, V? = VTV, constrains the velocity field. V?v thus represents
the viscous flow of fluid. The V(V - v) term allows for growth and shrinkage
of the local regions of the template. These two terms represent internal forces
that are in equilibrium with the external driving body force. The multiplicative
factors, p and A are called Lamé parameters and give a convenient representation
for Hooke’s law. p is the shear modulus while A, a combination of other elastic
constants, is equivalent to the bulk modulus for fluids. The incorporation of these
material constants which capture the features of the underlying elastic body, help
maintain a natural deformation process.

The driving force, b, is derived from a Gaussian sensor likelihood function
C(T(x), Rulx, 1) = & [ [(T(x—ulx,1) - 7)) dx.

The variation of this cost function with respect to the displacement field yields

the body force
b(x, u(x,1)) = —p (T(x —u(x, 1)) = R(x)) VT |x—u(x- (A.3)

In this expression, VT is a gradient which determines the direction of the defor-
mation at x—u(x,t). (T(x —u(x,t)) — R(x)), the difference in intensity between
the deformed template and the target, is a scalar that weights the gradient. When

the two images are perfectly aligned, this term is zero and the deformations cease.

Numerical Solution The viscous PDE given by equations (A.1), (A.2) and
(A.3) includes nonlinearities associated with the material derivative and the body
force. These nonlinear equations can be solved numerically by decomposing the

PDE into a series of linear equations that solve for the velocity field, v(x,t), at
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each instance of time. These individual steps are then integrated using Euler

integration of the material derivative.

Algorithm for fluid registration

1. Initialize ¢t = 0 and u(x,0) = 0.

Calculate the body force b.

3. If b is below a threshold or the maximum number of iterations
is reached, STOP.

4. Solve the (linear) PDE for the instantaneous velocity field, v(x,t).

5. Calculate the displacement field using explicit Euler integration
of the velocity.

6. Increment t and go to Step 2.

N

The key step in this algorithm is the solution of the PDE

uV2v + (p+ AV(V - v) + b(x,u) = 0.

For constant force this PDE is linear and the expression can be rewritten using

a linear operator £ that works on v

Lv + b(x,u) = 0.

Here, Lv = puV?v + (1 + A\)V(V - v) has the same form as the linear elasticity
operator in Hooke’s law. Christensen used a successive over relaxation (SOR)
scheme to solve this linear equation but this method is computationally expensive.
Bro-Nielson and Gramkow [BG96, GB97] proposed a method that speeds up
the algorithm by at least an order of magnitude. Their approach was to use a
convolution filter in a multiresolution grid since linear behavior can be modeled by

convolution filtering [RK04]. The filter kernel approximates the impulse response

42



of the deformation media and can thus be used to determine the instantaneous
velocity field at each point. The total velocity field can then be obtained by the

superposition of the responses for all the forces.

Discussion Fluid registration is a powerful technique. In principle, it is possi-
ble to warp any template to any reference but this flexibility also increases the

possibility for misregistration.
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APPENDIX B

Chain rule for differentiation

To differentiate a composite function v(w(t)), we apply the chain rule

v(w(t)) = d“(;‘;(t” — Vu (w(t) Vw(t).

v(iw(t)) = Vu(w(t)) Vw(t) = (Vx(t) I)(
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APPENDIX C

Symmetric Hausdorff distance

The Hausdorff distance, h(A, B) between two surfaces A and B is given by:

h(A, B) = maxmin ||a — b||2, (C.1)

acA beB

where ||.||o is the Ly distance. In general, h(A, B) # h(B, A). The symmetrized

Hausdorff distance
1

more accurately measures the error between two surfaces, since a distance com-
puted relative to a single surface may underestimate or overestimate the true

error.
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APPENDIX D

An ANOVA estimate for Intraclass Correlation

Correlations are commonly computed using the standard Pearson product-moment
procedure. This involves assigning one member of a bivariate pair to the X vari-
able and the other member of the pair to the Y variable. This designation can
be readily made, for instance, with husband-wife data, where each member of
the pair unequivocally belongs to a separate category. With twin data however,
the characterization of either member of the pair as X or Y is arbitrary. Many
X —Y labellings are possible and as a consequence the correlation value obtained
is not unique. Consider for example the number of permutations possible with

the 3 unordered pairs (a, b), (¢, d), (e, f):

X ace ade acf adf bef bde bdf bee
Y bdf bef bde bee ade acf ace adf

8 different X — Y pairings are possible and from these 8 (in actuality, there are
4 since correlation is symmetric about X — Y and half the pairings are mirror
images), values for the correlation coefficient can be calculated. More generally,
for n unordered pairs, there are 2" such pairings and these permutations give rise

to a distribution of correlation coefficients.

While it is possible to calculate the mean and confidence limits for this distri-
bution and hence infer a value for the correlation, permutation and resampling

methods are computationally intensive. A more standard approach for obtaining
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a measure for the correlation in situations where we are dealing with unordered
pairs is to set up the problem as an analysis of variance (ANOVA) calculation. Tt
is easy to see that if both members of a pair have relatively high values, the mean
value for that pair will also be relatively high. Conversely, when both members
of a pair have relatively low values, the mean for that pair will be relatively low.
Hence, the greater the correlation, the greater will be the variability between
the means of the pairs as a proportion of total variability, and the smaller will
be the proportion of total variability that exists within the pairs. The degree
of relationship can thus be estimated by the proportion of the total variability
that is accounted for by between class variance. To distinguish this measure from
the Pearson product-moment correlation, we define it as an intraclass correlation

(1CC) coefficient

0.2

= D.1
P= it o (D.1)

2

2 is the true variance between pairs and o2 is the pooled

In this formulation, o
variance within the pairs. In order to obtain estimates of these parameters, Equa-
tion (D.1) can be cast in an ANOVA framework and ¢? and o2 reinterpreted in
terms of the mean square. The mean square in ANOVA parlance is an estimate of
population variance based on the variability among a set of measures. o2 is then
simply the mean-square estimate of within-pair variance (M Sy tnin) computed in
ANOVA. If a group or pair is comprised of k& members, then the mean-square
estimate of between-pair variance (M Sperpeen) equals k times o2, the true com-

ponent, plus 62, the within pair error component. This is due to the fact that

the individual variances add-up and each mean contains a true component and
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an error term. In other words,

2
MSwithin = 0

o

2 2
MSbetween - k?O's + O,

From this we get:
2 MSbetween - MSwithin
O'S == k}

Substituting these in the expression for IC'C we have:

(Msbetween - MSwithin)/k
(MSbetween - MSwithin) /k + MSwithin
MSbetween - MSwithin

MSbetween - Mswithin + kMSwithin
MSbetween - MSwithin

MSbetween + (k - 1)M5within

This is the same expression derived by Shrout and Fleiss [SF79] for a design that
corresponds to a one-way ANOVA where each pair is a random effect and the
members of each pair are viewed as measurement errors. For twin pairs, k = 2,

and we get the following expression for IC'C":

MSbetween - MSwithin
MSbetween + MSwithin

1CC = (D.2)

The intraclass correlation ranges from 1.0 to —1.0. It is large and postive
when there is little variation within the pairs but the means between the pairs
differ. It is large and negative when the variation within a pair is much greater

than that between the pairs.
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